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Announcements, Reminders
• Creative Project 2 released, due Thursday May 2nd

• Note: uses Javadoc! 

• R2 out yesterday, due Thursday May 2nd

• Note: this is the last time C0 is eligible for resubmission! 

• Mid-Quarter Formative Feedback with Ken Yasuhara for part 
of class on Wednesday, May 1st

• IPL tips!
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https://courses.cs.washington.edu/courses/cse121/24sp/office_hours/


(PCM) Conditionals (1/4)
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Executes a block of statements 
if and only if the test is true
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(PCM) Conditionals (2/4)
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1. If the test is true: execute block of statements
2. If not, execute other block of statements
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(PCM) Conditionals (3/4)
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1. If the first test is true, execute that block
2. If not, proceed to the next test, and repeat
3. If none were true, don’t execute any blocks
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(PCM) Conditionals (4/4)
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With a large if-else-if-else chain,
• if there is an ending else, exactly one 

block will execute
• if there is no ending else, zero or one 

blocks will execute
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What does this 
program output?

A. odd even odd

B. one even odd

C. one even even

D. even even even

public static void main(String[] args) {
for (int i = 1; i <= 3; i++) {

System.out.print(mystery(i));
}

}

public static String mystery(int n) {
if (n % 2 == 1) {

return "odd ";
} else if (n == 1) {

return "one ";
}
return "even ";

}
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public static void main(String[] args) {
for (int i = 1; i <= 3; i++) {

System.out.print(mystery(i));
}

}

public static String mystery(int n) {
if (n % 2 == 1) {

return "odd ";
} else if (n == 1) {

return "one ";
}
return "even ";

}

This else if statement never runs!
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Common Problem-Solving Strategies

• Analogy – Is this similar to another problem you've seen?
• Brainstorming – Consider steps to solve problem before jumping into code

• Try to do an example "by hand" à outline steps

• Solve sub-problems – Is there a smaller part of the problem to solve? 
• Debugging – Does your solution behave correctly? 

• What is it doing? 
• What do you expect it to do? 
• What area of your code controls that part of the output? 

• Iterative Development – Can we start by solving a different problem that is 
easier? 

Lesson 9 - Spring 2024 11



Common Problem-Solving Strategies

• Analogy – Is this similar to another problem you've seen?
• Brainstorming – Consider steps to solve problem before jumping into code

• Try to do an example "by hand" à outline steps

• Solve sub-problems – Is there a smaller part of the problem to solve? 
• Debugging – Does your solution behave correctly? 

• What is it doing? 
• What do you expect it to do? 
• What area of your code controls that part of the output? 

• Iterative Development – Can we start by solving a different problem that is 
easier? 

Lesson 9 - Spring 2024 12



Common Problem-Solving Strategies

• Analogy – Is this similar to another problem you've seen?
• Brainstorming – Consider steps to solve problem before jumping into code

• Try to do an example "by hand" à outline steps

• Solve sub-problems – Is there a smaller part of the problem to solve?
• Debugging – Does your solution behave correctly? 

• What is it doing? 
• What do you expect it to do? 
• What area of your code controls that part of the output? 

• Iterative Development – Can we start by solving a different problem that is 
easier? 

Lesson 9 - Spring 2024 13



🍓🌮☕ Food for Thought  🥑🍱🧋

This week’s food for thought is:

• one of matt’s favourite areas of computer science

• less related to tech & society than the others…

• also the most ambitious, so don’t stress about it 
– sit back, enjoy the ride :)
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Wouldn’t it be nice…

We’ve seen that some for loops go on forever:
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for (int i = 0; i < 10; i--) {
System.out.println(i);

}

Wouldn’t it be nice if Java (or “the compiler”) could catch this 
for us? I mean, the loop “obviously” never ends…

for (;true;) {

}



The Halting Problem (1/2)
Benedict Cumberbatch showed that it’s 
impossible to generally solve this problem.

Regardless of:

• how good (big, fast) your computer is

• how good your algorithm is

• what people come up with the future!

Given a Java program, it is impossible to always 
know if it eventually stops (or loops infinitely).
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The Halting Problem (2/2)
Benedict Cumberbatch Alan Turing showed that it’s 
impossible to generally solve this problem.

Regardless of:

• how good (big, fast) your computer is

• how good your algorithm is

• what people come up with the future!

Given a Java program, it is impossible to always 
know if it eventually stops (or loops infinitely).
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Alan Turing at 24 (1936). He had a 
storied (if also very tragic and short) life.



Many, many problems are unsolvable.
I don’t mean “we currently don’t know how to solve them”.

I mean, “there is no algorithm that will ever solve them”.

Here are some related “undecidable” problems:

• given a Java program, are all the types correct?

• given a polynomial equation, does it have integer solution(s)?

• given any Magic: The Gathering board, 
does either player have a guaranteed winning strategy?
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“This statement is false”

In fact, there’s an even more concerning result: there is at least one 
math statement that we can’t prove true or false.

What is that statement? It looks something like…

“This statement is false”.
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In search of perfection

Even though we know it’s “impossible”, we still:

• try avoiding infinite loops

• type-check our Java programs

• play Magic: The Gathering (?)

• try to prove things in (and do) math!
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Dessert for Thought!
I argue there are two takeaways:

1. Don’t let perfection be the enemy of the good!
• applies to you in CSE 121 and as a programmer :)

• fundamental basis of much of computer science

2. Like thinking about these sorts of problems? 
This is also computer science!
(not all CS is just coding…) See: CSE 311, CSE 417/431
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