
CSE 121 Lesson 9:
Conditionals

Matt Wang
Spring 2024

sli.do #cse121-9

TAs: Andy Anju Archit Arkita Autumn Christian

Hannah H Hannah S Heather Hibbah Janvi Jessie

Jonus Julia Luke Maria Mia Ritesh

Shayna Simon Trey Vidhi Vivian Gumball?

Today’s playlist:
CSE 121 lecture beats 24sp

https://open.spotify.com/playlist/7EFPo9xPDcqoyiToIlZj7i?si=601198e2e28e4ff7

Announcements, Reminders
• Creative Project 2 released, due Thursday May 2nd

• Note: uses Javadoc!

• R2 out yesterday, due Thursday May 2nd

• Note: this is the last time C0 is eligible for resubmission!

• Mid-Quarter Formative Feedback with Ken Yasuhara for part
of class on Wednesday, May 1st

• IPL tips!

Lesson 9 - Spring 2024 2

https://courses.cs.washington.edu/courses/cse121/24sp/office_hours/

(PCM) Conditionals (1/4)

Lesson 9 - Spring 2024

Executes a block of statements
if and only if the test is true

3

(PCM) Conditionals (2/4)

Lesson 9 - Spring 2024

1. If the test is true: execute block of statements
2. If not, execute other block of statements

4

(PCM) Conditionals (3/4)

Lesson 9 - Spring 2024

1. If the first test is true, execute that block
2. If not, proceed to the next test, and repeat
3. If none were true, don’t execute any blocks

5

(PCM) Conditionals (4/4)

Lesson 9 - Spring 2024

With a large if-else-if-else chain,
• if there is an ending else, exactly one

block will execute
• if there is no ending else, zero or one

blocks will execute

6

sli.do #cse121-9

Lesson 9 - Spring 2024

What does this
program output?

A. odd even odd

B. one even odd

C. one even even

D. even even even

public static void main(String[] args) {
for (int i = 1; i <= 3; i++) {

System.out.print(mystery(i));
}

}

public static String mystery(int n) {
if (n % 2 == 1) {

return "odd ";
} else if (n == 1) {

return "one ";
}
return "even ";

}

7

sli.do #cse121-9

Lesson 9 - Spring 2024

public static void main(String[] args) {
for (int i = 1; i <= 3; i++) {

System.out.print(mystery(i));
}

}

public static String mystery(int n) {
if (n % 2 == 1) {

return "odd ";
} else if (n == 1) {

return "one ";
}
return "even ";

}

This else if statement never runs!

8

Lesson 9 - Spring 2024 10

Common Problem-Solving Strategies

• Analogy – Is this similar to another problem you've seen?
• Brainstorming – Consider steps to solve problem before jumping into code

• Try to do an example "by hand" à outline steps

• Solve sub-problems – Is there a smaller part of the problem to solve?
• Debugging – Does your solution behave correctly?

• What is it doing?
• What do you expect it to do?
• What area of your code controls that part of the output?

• Iterative Development – Can we start by solving a different problem that is
easier?

Lesson 9 - Spring 2024 11

Common Problem-Solving Strategies

• Analogy – Is this similar to another problem you've seen?
• Brainstorming – Consider steps to solve problem before jumping into code

• Try to do an example "by hand" à outline steps

• Solve sub-problems – Is there a smaller part of the problem to solve?
• Debugging – Does your solution behave correctly?

• What is it doing?
• What do you expect it to do?
• What area of your code controls that part of the output?

• Iterative Development – Can we start by solving a different problem that is
easier?

Lesson 9 - Spring 2024 12

Common Problem-Solving Strategies

• Analogy – Is this similar to another problem you've seen?
• Brainstorming – Consider steps to solve problem before jumping into code

• Try to do an example "by hand" à outline steps

• Solve sub-problems – Is there a smaller part of the problem to solve?
• Debugging – Does your solution behave correctly?

• What is it doing?
• What do you expect it to do?
• What area of your code controls that part of the output?

• Iterative Development – Can we start by solving a different problem that is
easier?

Lesson 9 - Spring 2024 13

🍓🌮☕ Food for Thought 🥑🍱🧋

This week’s food for thought is:

• one of matt’s favourite areas of computer science

• less related to tech & society than the others…

• also the most ambitious, so don’t stress about it
– sit back, enjoy the ride :)

Lesson 9 - Spring 2024 14

Wouldn’t it be nice…

We’ve seen that some for loops go on forever:

Lesson 9 - Spring 2024 15

for (int i = 0; i < 10; i--) {
System.out.println(i);

}

Wouldn’t it be nice if Java (or “the compiler”) could catch this
for us? I mean, the loop “obviously” never ends…

for (;true;) {

}

The Halting Problem (1/2)
Benedict Cumberbatch showed that it’s
impossible to generally solve this problem.

Regardless of:

• how good (big, fast) your computer is

• how good your algorithm is

• what people come up with the future!

Given a Java program, it is impossible to always
know if it eventually stops (or loops infinitely).

Lesson 9 - Spring 2024 16

The Halting Problem (2/2)
Benedict Cumberbatch Alan Turing showed that it’s
impossible to generally solve this problem.

Regardless of:

• how good (big, fast) your computer is

• how good your algorithm is

• what people come up with the future!

Given a Java program, it is impossible to always
know if it eventually stops (or loops infinitely).

Lesson 9 - Spring 2024 17

Alan Turing at 24 (1936). He had a
storied (if also very tragic and short) life.

Many, many problems are unsolvable.
I don’t mean “we currently don’t know how to solve them”.

I mean, “there is no algorithm that will ever solve them”.

Here are some related “undecidable” problems:

• given a Java program, are all the types correct?

• given a polynomial equation, does it have integer solution(s)?

• given any Magic: The Gathering board,
does either player have a guaranteed winning strategy?

Lesson 9 - Spring 2024 18

“This statement is false”

In fact, there’s an even more concerning result: there is at least one
math statement that we can’t prove true or false.

What is that statement? It looks something like…

“This statement is false”.

Lesson 9 - Spring 2024 19

In search of perfection

Even though we know it’s “impossible”, we still:

• try avoiding infinite loops

• type-check our Java programs

• play Magic: The Gathering (?)

• try to prove things in (and do) math!

Lesson 9 - Spring 2024 20

Dessert for Thought!
I argue there are two takeaways:

1. Don’t let perfection be the enemy of the good!
• applies to you in CSE 121 and as a programmer :)

• fundamental basis of much of computer science

2. Like thinking about these sorts of problems?
This is also computer science!
(not all CS is just coding…) See: CSE 311, CSE 417/431

Lesson 9 - Spring 2024 21

