CSE 121 Lesson 16:
Arrays and 2D Arrays

Matt Wang
Spring 2024
Announcements, Reminders

• **Quiz 2 tomorrow!**

• **Programming Assignment 3 releasing later today – last assignment!**
 • Extending P3's planned deadline to **Thursday** next week (May 30th)
 • But, can only resubmit for R7
 (as feedback will not be released the following Tuesday)

• **IPL has special hours for the next week – see Ed post!**

• **Final Exam: Wednesday, June 5th from 2:30-4:20 in KNE 120**
 • [Left-Handed Seating Requests Form](#), closes end-of-day Tuesday, May 28th
Final Exam Details (1/2)

- Final Exam: **Wednesday, June 5th from 2:30-4:20 in KNE 120**
- In-person, on paper, with assigned seating
- No collaboration – should be completed individually
- **Not open book**
 - We will provide you one “reference sheet”, and
 - You may bring one 8.5x11-inch page of notes, handwritten or typed, double-sided
- Will have 6 problems, all similar in style to the quizzes
- Focus is on behavior (not code style) – minor syntax errors are allowed
Final Exam Details (2/2)

• Next week will be focused on Final Exam review and preparation
• Many resources will be available, including:
 • dedicated lecture time for final exam review!
 • dedicated section time for final exam review!
 • multiple previous actual finals + practice finals
 • final exam review session (details TBD)
• Reminder: IPL will not be open during finals week, so plan ahead!
• More details on Friday (+ on course website)
 • (expect an announcement post from me, after the quiz)
public static void main(String[] args) {
 int x = 0;
 int[] a = new int[4];
 x++;

 mystery(x, a);
 System.out.println(x + " " + Arrays.toString(a));

 x++;
 mystery(x, a);
 System.out.println(x + " " + Arrays.toString(a));
}

public static void mystery(int x, int[] a) {
 x++;
 a[x]++;
 System.out.println(x + " " + Arrays.toString(a));
}
Poll in with your answer!

```java
public static void main(String[] args) {
    int x = 0;
    int[] a = new int[4];
    x++;

    mystery(x, a);
    System.out.println(x + " " + Arrays.toString(a));

    x++;
    mystery(x, a);
    System.out.println(x + " " + Arrays.toString(a));
}

public static void mystery(int x, int[] a) {
    x++;
    a[x]++;
    System.out.println(x + " " + Arrays.toString(a));
}
```
An array of arrays!

- The ElementType of the array is another array itself!
 - Your first example of “nested data structures”
 - There will be more in CSE 122!

```
int[][] a = new int[4][3];
```

```
int[][] double[][] String[][]
boolean[][] char[][]
```
(PCM) **2D Arrays (2/3)**

An array of arrays!

The two dimensions are "rows" and "columns"
A slightly more accurate view...

reference semantics
(PCM) 2D Array Traversals

for each row...

```java
for (int i = 0; i < list.length; i++) {
    for (int j = 0; j < list[i].length; j++) {
        // do something with list[i][j]
    }
}
```

for each element **within** a row...
Arrays Utility Class

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
</table>
| Arrays.toString(array); | Returns a String representing the array, such as
| | "[10, 30, -25, 17]" |
| Arrays.fill(array, value); | Sets every element to the given value |
| Arrays.equals(array1, array2); | Returns true if the two arrays contain the same elements in the same order |
| Arrays.deepToString(array); | Returns a String representing the array; if the array contains other arrays |
| | as elements, the String represents their contents, and so on. For example, |
| | "[[99, 151], [30, 5]]" |
| Arrays.deepEquals(array1, array2); | Returns true if the two arrays contain the same elements in the same order; if the array(s) contain other arrays as elements, their contents are tested for equality, and so on. |
Applications of 2D Arrays

• **Matrices**
 • Useful in various applications requiring complex math!
 • Fundamental to machine learning & AI
 • P3 is a real-life application of this!

• **Board games**
 • e.g., chess/checkerboard, tic tac toe, sudoku

• **Representing information in a grid or table**
 • e.g., scorekeeping, gradebook, census data

• **Image processing**
matrixAdd

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>96</td>
<td>18</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

+

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>73</td>
<td>66</td>
<td>79</td>
<td>39</td>
</tr>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
<td>47</td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
<td>1</td>
</tr>
</tbody>
</table>
matrixAdd

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>96</td>
<td>18</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
</tr>
</tbody>
</table>

+

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>73</td>
<td>66</td>
<td>79</td>
<td>39</td>
</tr>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
<td>47</td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
<td>1</td>
</tr>
</tbody>
</table>

i: 0
j: 0
matrixAdd

<table>
<thead>
<tr>
<th>23</th>
<th>96</th>
<th>18</th>
<th>4</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>70</th>
<th>73</th>
<th>66</th>
<th>79</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
<td>47</td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
<td>1</td>
</tr>
</tbody>
</table>

\[i: 0 \]
\[j: 0 \]
matrixAdd

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>96</td>
<td>18</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
</tr>
</tbody>
</table>

Example

- **i**: 0
- **j**: 1

1

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>73</td>
<td>66</td>
<td>79</td>
<td>39</td>
</tr>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
<td>47</td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
<td>1</td>
</tr>
</tbody>
</table>

Result

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>169</td>
</tr>
</tbody>
</table>
matrixAdd

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>96</td>
<td>18</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
</tr>
</tbody>
</table>

+

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>73</td>
<td>66</td>
<td>79</td>
<td>39</td>
</tr>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
<td>47</td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\begin{array}{ccc}
93 & 169 & 84 \\
\end{array}\]
matrixAdd

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>96</td>
<td>18</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
</tr>
</tbody>
</table>

$+\quad$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>73</td>
<td>66</td>
<td>79</td>
</tr>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
</tr>
</tbody>
</table>

i: 0

j: 3

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
matrixAdd

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>96</td>
<td>18</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
</tr>
</tbody>
</table>

$\begin{array}{c}
93 \quad 169 \quad 84 \quad 83 \quad 103 \\
\end{array}$

$\begin{array}{c}
91 \\
75 \\
73 \\
99 \\
47 \\
\end{array}$

$\begin{array}{c}
27 \\
64 \\
21 \\
34 \\
1 \\
\end{array}$

$i: 0$

$j: 4$
matrixAdd

\[
\begin{array}{ccccc}
23 & 96 & 18 & 4 & 64 \\
45 & 40 & 18 & 44 & 34 \\
92 & 13 & 77 & 71 & 12 \\
\end{array}
\]

\[
\begin{array}{ccccc}
70 & 73 & 66 & 79 & 39 \\
91 & 75 & 73 & 99 & 47 \\
27 & 64 & 21 & 34 & 1 \\
\end{array}
\]

\[
\begin{array}{cccc]
93 & 169 & 84 & 83 & 103 \\
136 & 81 & 119 & 77 & 98 & 105 & 13 & 20 \\
\end{array}
\]

\[
i: 1 \\
j: 0
\]
matrixAdd

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>96</td>
<td>18</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

+

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>73</td>
<td>66</td>
<td>79</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

i: 1

j: 1

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>169</td>
<td>84</td>
<td>83</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING
matrixAdd

<table>
<thead>
<tr>
<th></th>
<th>23</th>
<th>96</th>
<th>18</th>
<th>4</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>70</th>
<th>73</th>
<th>66</th>
<th>79</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Example

- **i**: 1
- **j**: 2

Add the corresponding elements of the two matrices:

<table>
<thead>
<tr>
<th></th>
<th>93</th>
<th>169</th>
<th>84</th>
<th>83</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>115</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Result matrix:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
matrixAdd

\[
\begin{bmatrix}
23 & 96 & 18 & 4 & 64 \\
45 & 40 & 18 & 44 & 34 \\
92 & 13 & 77 & 71 & 12 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
70 & 73 & 66 & 79 & 39 \\
91 & 75 & 73 & 99 & 47 \\
27 & 64 & 21 & 34 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
93 & 169 & 84 & 83 & 103 \\
136 & 115 & 91 & 143 & \\
\end{bmatrix}
\]
matrixAdd

\[
\begin{array}{cccc}
23 & 96 & 18 & 4 \\
45 & 40 & 18 & 44 \\
92 & 13 & 77 & 71 \\
\end{array}
\]

\[
\begin{array}{cccc}
70 & 73 & 66 & 79 \\
91 & 75 & 73 & 99 \\
27 & 64 & 21 & 34 \\
\end{array}
\]

\[
\begin{array}{cccc}
i: 1 \\
93 & 169 & 84 & 83 \\
136 & 115 & 91 & 143 \\
\end{array}
\]

\[
\begin{array}{cccc}
j: 4 \\
92 & 13 & 77 & 71 \\
136 & 115 & 91 & 143 \\
\end{array}
\]

\[
\begin{array}{cccc}
93 & 169 & 84 & 83 \\
136 & 115 & 91 & 143 \\
\end{array}
\]
matrixAdd

<table>
<thead>
<tr>
<th></th>
<th>23</th>
<th>96</th>
<th>18</th>
<th>4</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

\[i: 2 \]
\[j: 0 \]

\[\]

<table>
<thead>
<tr>
<th></th>
<th>70</th>
<th>73</th>
<th>66</th>
<th>79</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[\]

<table>
<thead>
<tr>
<th></th>
<th>93</th>
<th>169</th>
<th>84</th>
<th>83</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>115</td>
<td>91</td>
<td>143</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAUL G. ALLEN SCHOOL
OF COMPUTER SCIENCE & ENGINEERING

25
matrixAdd

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>96</td>
<td>18</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
</tr>
</tbody>
</table>

\[\begin{array}{c}
\text{i: 2} \\
\text{j: 1}
\end{array} \]

\[\begin{array}{ccccc}
93 & 169 & 84 & 83 & 103 \\
136 & 115 & 91 & 143 & 81 \\
119 & 77 & & & \\
\end{array}\]

\[\begin{array}{c}
70 \\
91 \\
27
\end{array}\]

\[\begin{array}{c}
73 \\
75 \\
64
\end{array}\]

\[\begin{array}{c}
66 \\
73 \\
21
\end{array}\]

\[\begin{array}{c}
79 \\
99 \\
34
\end{array}\]

\[\begin{array}{c}
39 \\
47 \\
1
\end{array}\]

PAUL G. ALLEN SCHOOL
OF COMPUTER SCIENCE & ENGINEERING
matrixAdd

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>96</td>
<td>18</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

$\begin{align*}
\text{i: 2} \\
\text{j: 2}
\end{align*}$

\[+ \]

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>73</td>
<td>66</td>
<td>79</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>169</td>
<td>84</td>
<td>83</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>115</td>
<td>91</td>
<td>143</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>77</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING
matrixAdd

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>96</td>
<td>18</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
</tr>
</tbody>
</table>

\[i: 2 \]
\[j: 3 \]

+

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>73</td>
<td>66</td>
<td>79</td>
<td>39</td>
</tr>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
<td>47</td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccccc}
93 & 169 & 84 & 83 & 103 \\
136 & 115 & 91 & 143 & 81 \\
119 & 77 & 98 & 105 & \\
\end{array}
\]
matrixAdd

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>96</td>
<td>18</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
</tr>
</tbody>
</table>

\[\text{+}\]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>73</td>
<td>66</td>
<td>79</td>
<td>39</td>
</tr>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
<td>47</td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\text{i: 2} \quad \text{j: 4}\]

\[
\begin{array}{cccccc}
93 & 169 & 84 & 83 & 103 \\
136 & 115 & 91 & 143 & 81 \\
119 & 77 & 98 & 105 & 13
\end{array}
\]
matrixAdd

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>96</td>
<td>18</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>18</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>77</td>
<td>71</td>
<td>12</td>
</tr>
</tbody>
</table>

+

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>73</td>
<td>66</td>
<td>79</td>
<td>39</td>
</tr>
<tr>
<td>91</td>
<td>75</td>
<td>73</td>
<td>99</td>
<td>47</td>
</tr>
<tr>
<td>27</td>
<td>64</td>
<td>21</td>
<td>34</td>
<td>1</td>
</tr>
</tbody>
</table>

+

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>169</td>
<td>84</td>
<td>83</td>
<td>103</td>
</tr>
<tr>
<td>136</td>
<td>115</td>
<td>91</td>
<td>143</td>
<td>81</td>
</tr>
<tr>
<td>119</td>
<td>77</td>
<td>98</td>
<td>105</td>
<td>13</td>
</tr>
</tbody>
</table>
How many days' data would you like to input? 3

Next day's data:
- Temperature in Seattle? 44
- Temperature in Tacoma? 40
- Temperature in Bothell? 43

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 40
- Temperature in Bothell? 44

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 41
- Temperature in Bothell? 43

...
(2D)ays Above Average: `readData()`

How many days' data would you like to input? 3

Next day's data:
- Temperature in Seattle? 44
- Temperature in Tacoma? 40
- Temperature in Bothell? 43

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 40
- Temperature in Bothell? 44

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 41
- Temperature in Bothell? 43

...
(2D)ays Above Average: readData()

How many days' data would you like to input? 3

Next day's data:
 Temperature in Seattle? 44
 Temperature in Tacoma? 40
 Temperature in Bothell? 43

Next day's data:
 Temperature in Seattle? 42
 Temperature in Tacoma? 40
 Temperature in Bothell? 44

Next day's data:
 Temperature in Seattle? 42
 Temperature in Tacoma? 41
 Temperature in Bothell? 43

…

<table>
<thead>
<tr>
<th></th>
<th>Seattle</th>
<th>Tacoma</th>
<th>Bothell</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(2D)ays Above Average: readData()

How many days' data would you like to input? 3

Next day's data:
 Temperature in Seattle? 44
 Temperature in Tacoma? 40
 Temperature in Bothell? 43

Next day's data:
 Temperature in Seattle? 42
 Temperature in Tacoma? 40
 Temperature in Bothell? 44

Next day's data:
 Temperature in Seattle? 42
 Temperature in Tacoma? 41
 Temperature in Bothell? 43

...
(2D)ays Above Average: \texttt{readData()}

How many days' data would you like to input? \texttt{3}

Next day's data:
 - Temperature in Seattle? \texttt{44}
 - Temperature in Tacoma? \texttt{40}
 - Temperature in Bothell? \texttt{43}

Next day's data:
 - Temperature in Seattle? \texttt{42}
 - Temperature in Tacoma? \texttt{40}
 - Temperature in Bothell? \texttt{44}

Next day's data:
 - Temperature in Seattle? \texttt{42}
 - Temperature in Tacoma? \texttt{41}
 - Temperature in Bothell? \texttt{43}

\[\begin{array}{ccc}
1 & 44 & 40 & 43 \\
2 & 42 & & \\
3 & & & \\
\end{array}\]
How many days' data would you like to input? 3

Next day's data:
- Temperature in Seattle? 44
- Temperature in Tacoma? 40
- Temperature in Bothell? 43

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 40
- Temperature in Bothell? 44

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 41
- Temperature in Bothell? 43

...
(2D)ays Above Average: `readData()`

How many days' data would you like to input? 3

Next day's data:
- Temperature in Seattle? 44
- Temperature in Tacoma? 40
- Temperature in Bothell? 43

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 40
- Temperature in Bothell? 44

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 41
- Temperature in Bothell? 43

...
(2D)ays Above Average: `readData()`

How many days' data would you like to input? 3

Next day's data:
- Temperature in Seattle? 44
- Temperature in Tacoma? 40
- Temperature in Bothell? 43

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 40
- Temperature in Bothell? 44

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 41
- Temperature in Bothell? 43

...
(2D)ays Above Average: `readData()`

How many days' data would you like to input? 3

Next day's data:
- Temperature in Seattle? 44
- Temperature in Tacoma? 40
- Temperature in Bothell? 43

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 40
- Temperature in Bothell? 44

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 41
- Temperature in Bothell? 43

<table>
<thead>
<tr>
<th></th>
<th>Seattle</th>
<th>Tacoma</th>
<th>Bothell</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>40</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>

...
(2D)ays Above Average: `readData()`

How many days' data would you like to input? 3

Next day's data:
- Temperature in Seattle? 44
- Temperature in Tacoma? 40
- Temperature in Bothell? 43

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 40
- Temperature in Bothell? 44

Next day's data:
- Temperature in Seattle? 42
- Temperature in Tacoma? 41
- Temperature in Bothell? 43

...
(2D)ays Above Average: `computeAverages()`

How many days' data would you like to input? 3...

The average values for each location were

\[[42.666666666666664, 40.333333333333336, 43.333333333333336] \]

<table>
<thead>
<tr>
<th></th>
<th>Seattle</th>
<th>Tacoma</th>
<th>Bothell</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>40</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>41</td>
<td>43</td>
</tr>
</tbody>
</table>

Average of Seattle temperatures

\[
(44 + 42 + 42) / 3
\]