CSE 121 Lesson 16: Arrays and 2D Arrays

Matt Wang

Spring 2024

sli.do #cse121-16

TAs:	Andy	Anju	Archit	Arkita	Autumn	Christian
	Hannah H	Hannah S	Heather	Hibbah	Janvi	Jessie
	Jonus	Julia	Luke	Maria	Mia	Ritesh
	Shavna	Simon	Trev	Vidhi	Vivian	Gumball?

Today's playlist: CSE 121 lecture beats 24sp

Announcements, Reminders

- Quiz 2 tomorrow!
- Programming Assignment 3 releasing later today last assignment!
 - Extending P3's planned deadline to Thursday next week (May 30th)
 - But, can only resubmit for R7
 (as feedback will <u>not</u> be released the following Tuesday)
- IPL has special hours for the next week see Ed post!
- Final Exam: Wednesday, June 5th from 2:30-4:20 in KNE 120
 - <u>Left-Handed Seating Requests Form</u>, closes end-of-day Tuesday, May 28th

Final Exam Details (1/2)

- Final Exam: Wednesday, June 5th from 2:30-4:20 in KNE 120
- In-person, on paper, with assigned seating
- No collaboration should be completed individually
- Not open book
 - We will provide you one "reference sheet", and
 - You may bring one 8.5x11-inch page of notes, handwritten or typed, double-sided
- Will have 6 problems, all similar in style to the quizzes
- Focus is on behavior (not code style) minor syntax errors are allowed

Final Exam Details (2/2)

- Next week will be focused on Final Exam review and preparation
- Many resources will be available, including:
 - dedicated lecture time for final exam review!
 - dedicated section time for final exam review!
 - multiple previous <u>actual</u> finals + practice finals
 - final exam review session (details TBD)
- Reminder: IPL will <u>not</u> be open during finals week, so plan ahead!
- More details on Friday (+ on course website)
 - (expect an announcement post from me, after the quiz)

Poll in with your answer!

sli.do #cse121-16

```
public static void main(String[] args) {
    int x = 0;
    int[] a = new int[4];
   X++;
   mystery(x, a);
    System.out.println(x + " " + Arrays.toString(a));
   X++;
   mystery(x, a);
    System.out.println(x + " " + Arrays.toString(a));
public static void mystery(int x, int[] a) {
    X++;
    a[x]++;
    System.out.println(x + " " + Arrays.toString(a));
```

Four lines of output would be produced by this code. What would those four lines be?

Poll in with your answer!

sli.do #cse121-16

```
public static void main(String[] args) {
    int x = 0;
    int[] a = new int[4];
   X++;
   mystery(x, a);
    System.out.println(x + " " + Arrays.toString(a));
   X++;
   mystery(x, a);
    System.out.println(x + " " + Arrays.toString(a));
public static void mystery(int x, int[] a) {-
   X++;
    a[x]++;
    System.out.println(x + " " + Arrays.toString(a));
```

(PCM) 2D Arrays (1/3)

An array of arrays!

- The ElementType of the array is another array itself!
 - Your first example of "nested data structures"
 - There will be more in CSE 122!

```
int[][] double[][] String[][]
boolean[][] char[][]
```

(PCM) 2D Arrays (2/3)

An array of arrays!

The two dimensions are "rows" and "columns"

(PCM) 2D Arrays (3/3)

A slightly more accurate view...

reference semantics

(PCM) 2D Array Traversals

for each row...

```
for (int i = 0; i < list.length; i++) {
    for (int j = 0; j < list[i].length; j++) {
        // do something with list[i][j]
    }
    for each element within a row...</pre>
```

Arrays Utility Class

Method	Description
Arrays.toString(array);	Returns a String representing the array, such as "[10, 30, -25, 17]"
Arrays.fill(array, value);	Sets every element to the given value
Arrays.equals(array1, array2);	Returns true if the two arrays contain the same elements in the same order
Arrays.deepToString(array);	Returns a String representing the array; if the array contains other arrays as elements, the String represents their contents, and so on. For example, "[[99, 151], [30, 5]]"
Arrays.deepEquals(array1, array2);	Returns true if the two arrays contain the same elements in the same order; if the array(s) contain other arrays as elements, their contents are tested for equality, and so on.

Applications of 2D Arrays

Matrices

- Useful in various applications requiring complex math!
- Fundamental to machine learning & Al
- P3 is a real-life application of this!
- Board games
 - e.g., chess/checkerboard, tic tac toe, sudoku
- Representing information in a grid or table
 - e.g., scorekeeping, gradebook, census data
- Image processing

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

j: 0

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93		

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169		

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169	84	

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169	84	83	

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169	84	83	103

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169	84	83	103
136				

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169	84	83	103
136	115			

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169	84	83	103
136	115	91		

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169	84	83	103
136	115	91	143	

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169	84	83	103
136	115	91	143	81

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169	84	83	103
136	115	91	143	81
119				

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

i: 2 j: 1

93	169	84	83	103
136	115	91	143	81
119	77			

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169	84	83	103
136	115	91	143	81
119	77	98		

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169	84	83	103
136	115	91	143	81
119	77	98	105	

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

70	73	66	79	39
91	75	73	99	47
27	64	21	34	1

93	169	84	83	103
136	115	91	143	81
119	77	98	105	13

23	96	18	4	64
45	40	18	44	34
92	13	77	71	12

93	169	84	83	103
136	115	91	143	81
119	77	98	105	13

	Seattle	Tacoma	Bothell
1	44	40	43
2	42	40	44
3	42	41	43

How many days' data would you like to input? 3 Next day's data: Temperature in Seattle? 44 Temperature in Tacoma? 40 Temperature in Bothell? 43 Next day's data: Temperature in Seattle? 42 Temperature in Tacoma? 40 Temperature in Bothell? 44 Next day's data: Temperature in Seattle? 42 Temperature in Tacoma? 41 Temperature in Bothell? 43

	Seattle	Tacoma	Bothell
1	44	40	
2			
3			

Lesson 16 - Spring 2024

	Seattle	Tacoma	Bothell
1	44	40	43
2			
3			

	Seattle	Tacoma	Bothell
1	44	40	43
2	42		
3			

How many days' data would you like to input? 3 Next day's data: Temperature in Seattle? 44 Temperature in Tacoma? 40 Temperature in Bothell? 43 Next day's data: Temperature in Seattle? 42 Temperature in Tacoma? 40 Temperature in Bothell? 44 Next day's data: Temperature in Seattle? 42 Temperature in Tacoma? 41 Temperature in Bothell? 43

	Seattle	Tacoma	Bothell
1	44	40	43
2	42	40	
3			

Lesson 16 - Spring 2024

	Seattle	Tacoma	Bothell
1	44	40	43
2	42	40	44
3			

	Seattle	Tacoma	Bothell
1	44	40	43
2	42	40	44
3	42		

	Seattle	Tacoma	Bothell
1	44	40	43
2	42	40	44
3	42	41	

	Seattle	Tacoma	Bothell
1	44	40	43
2	42	40	44
3	42	41	43

(2D) ays Above Average: computeAverages()

	Seattle	Tacoma	Bothell
1	44	40	43
2	42	40	44
3	42	41	43

Average of Seattle temperatures

(44 + 42 + 42) / 3