
CSE 121 Winter 2024 Final Exam (Alternate) April 5, 2024

Name:

Section: Student Number (not UWNetID):

Rules/Guidelines:

• You must not begin working before time begins, and you must stop working promptly when time is called. Any
modifications to your exam (writing or erasing) before time begins or after time is called will result in a penalty.

• You are allowed one page of notes, no larger than 8.5 x 11 inches. You may not access any other resources or use
any electronic devices (including calculators, phones, or smart watches, among others) during the exam. Using
unauthorized resources or devices will result in a penalty.

• In general, you are limited to Java concepts or syntax covered in class. You may not use break, continue, a return
from a void method, try/catch, or Java 8 features.

• You are limited to the standard Java classes and methods listed on the provided reference sheet.
• You do not need to write import statements.
• If you abandon one answer and write another, clearly cross out the answer(s) you do not want graded and draw

a circle or box around the answer you do want graded. When in doubt, we will grade the answer that
appears in the space indicated, and the first such answer if there is more than one.

• If you require scratch paper, raise your hand and we will bring some to you. If you write an answer on scratch
paper, please write your name and clearly label which question you are answering on the scratch paper, and
clearly indicate on the question page that your answer is on scratch paper. Staple all scratch paper you want
graded to the end of the exam before turning in.

• Answers must be written as proper Java code. Pseudocode or comments will not be graded. However, the exam is
not graded on code quality. You are not required to include comments.

• You are also allowed to abbreviate "System.out.print" and "System.out.println" as "S.o.p" and "S.o.pln"
respectively. You may NOT use any other abbreviations.

Grading:

• Each problem will receive a single E/S/N grade.
• On problems 1 through 3, earning an E requires answering all parts correctly and earning an S requires answering

almost all parts correctly.
• On problems 4 through 6, earning an E requires an implementation that meets all stated requirements and behaves

exactly correctly in all cases. Earning an S requires an implementation that meets all stated requirements and
behaves exactly correctly in most cases or behaves nearly correctly in all cases.

• Minor syntax errors will be ignored as long as it is unambiguous what was intended (e.g. forgetting a semicolon,
misspelling a variable name where there is only one close option). Major syntax errors, or errors where it is unclear
what was intended, may have an impact on your grade.

Advice:

• Read all questions carefully. Be sure you understand the question before you begin your answer.
• The questions are not necessarily in order of difficulty. Feel free to skip around. Be sure you are able to at least

attempt every question.
• Write clearly and legibly. We cannot award credit for answers we cannot read.
• If you have questions, raise your hand to ask. The worst that can happen is we will say "I can’t answer that."
• Ask questions as soon as you have them. Do not wait until you have several questions.

Initial here to indicate you have read and agree to these rules:

CSE 121 Winter 2024 Final Exam (Alternate) Page 2 of 16

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 3 of 16

1. Code Comprehension

(a) Trace the evaluation of the following expressions, and give their resulting values. Make sure
to give a value of the appropriate type. (i.e. Be sure to include a .0 at the end of a double
value, or "" around Strings.) Write your answer in the line to the right of each expression.

i. 8 / 5 + 3 * (1 / 2) - 9 % 5

Solution: -3

ii. 4 * 2 + "1 + 3" + "e -" + 8 / 3

Solution: "81 + 3e -2"

iii. 14 / 4 > 3.0 || !(4 - 3.0 == 1)

Solution: false

(b) Consider the following code:

public static void m(int x, int y) {
while (x > 1) {

System.out.println(x + "," + y);
if (x % y == 0) {

x = x / y;
} else {

x = x + 1;
}

}
}

Select all calls to m that would print out four or more non-empty lines.
□ m(1, 1);
■ m(5, 2);
□ m(3, 4);
□ m(3, 5);
□ m(0, 6);

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 4 of 16

(c) Consider the following code:

public static void mystery(int x, int a) {
if (x < 1) {

x = 1;
}

int y = x;
// Point A

while (x < a) {
// Point B
int temp = y;
y = y + x;
// Point C
x = temp;
// Point D

}

// Point E
System.out.println(x);

}

Assume that mystery is called. For each of the statements below, place a check (✓) in the
corresponding box if it is true.

□ At Point A, both x > a and y > a must be true.
□ At Point B, x < y must be true.
■ At Point C, x < y must be true.
■ At Point D, x < y must be true.
□ At Point E, both x > a and y > a must be true.

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 5 of 16

2. Array Code Tracing

Consider the following method:

public static int[][] mystery(int[] list) {
int[][] result = new int[list.length][list.length];
for (int i = 0; i < result.length; i++) {

for (int j = 0; j < result[i].length; j++) {
result[i][j] = list[i] * list[j];

}
}
for (int i = 0; i < result.length; i++) {

list[i] -= result[i][i]; // Point X
result[i][i] = 0;

}
return result;

}

(a) Consider the following code:

int[] arr = {2, 4, 6};
int[][] result = mystery(arr);

What are the contents in arr after this code is executed?

Solution: [-2, -12, -30]

(b) Consider the following code:

int[] arr = {2, 4, 6};
int[][] result = mystery(arr);

What are the contents in result after this code is executed?

Solution: [[0, 8, 12], [8, 0, 24], [12, 24, 0]]

(c) Which two statements are true about the mystery method?
□ Each int element of the returned 2D array will always be nonnegative (i.e. has a

value greater than or equal to zero).
■ There will always be at least list.length items in the returned 2D array with a

value of exactly 0.
□ Depending on the input, it is possible for result.length to be different from

list.length.
□ Because we don’t use a nested for loop to traverse a 2D array, it is possible for us

to have an array index out of bounds error at Point X.
■ If the parameter list is empty (i.e., has zero items), then the returned 2D array

will also be empty.

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 6 of 16

3. Debugging

Consider a static method called seasonInformation that prompts the user for month and day,
and then uses some logic to determine and return the current season as a string.

In particular, the seasonInformation method is passed one parameter: a Scanner object (which
we’ll call console). The method uses console to prompt the user for the current month and day.

To determine the season, there is a specific set of steps that should determine the returned string:

1. The user is prompted for the current month, as a number from 1 to 12.
2. If the input is invalid (i.e., a number that is not between 1 and 12 inclusive), the string

"Invalid" should be returned.
3. For some inputs, we can determine the season without needing to ask for any more information.

For each of these inputs, the method should immediately return the corresponding string,
without prompting the user for any more input. In particular:

• for months 1 and 2 (Jan and Feb), return "Winter"
• for months 4 and 5 (Apr and May), return "Spring"
• for months 7 and 8 (Jul and Aug), return "Summer"
• for months 10 and 11 (Oct and Nov), return "Fall"

4. For the other months (3, 6, 9, 12), we need to ask the user for the date. In particular,
• for month 3 (Mar), return "Winter" if it is before the 21st and "Spring" otherwise
• for month 6 (Jun), return "Spring" if it is before the 21st and "Summer" otherwise
• for month 9 (Sep), return "Summer" if it is before the 21st and "Fall" otherwise
• for month 12 (Dec), return "Fall" if it is before the 21st and "Winter" otherwise

You may assume that the provided Scanner is valid, and that the user will always provide numbers
as input. In addition, you may assume that the user never inputs a day that does not exist (e.g.
March 32nd or December -1st).

Here are the expected results of three different example calls to seasonInformation (with a valid
Scanner); (User input is in bold and underlined):

Example #1: “simpler” case.

Please enter the month (1-12): 2

The method would return the season string "Winter".

Example #2: “complicated” case.

Please enter the month (1-12): 6
Please enter the day (1-31): 15

The method would return the season string "Spring".

Example #3: invalid input.

Please enter the month (1-12): -42

The method would return the season string "Invalid".

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 7 of 16

Consider the following proposed buggy implementation of seasonInformation. This
implementation contains three bugs that are causing it to not work as intended!

Your task: Annotate (write on) the code below to indicate how you would fix the three bugs. You
may add (using arrows to indicate where to insert), remove (by crossing out), or modify (with a
combination) any code you choose. Each fix is “local” (i.e. it should not require significant work).

• You must correctly identify three of the lines with issues, or correctly identify and fix two of the bugs
for an S grade.

• You must correctly identify all three lines with the bugs and correctly fix all three of the bugs for an
E grade.

1 public static String seasonInformation(Scanner console) {
2 System.out.print("Please enter the month (1 -12): ");
3 int month = console.nextInt ();
4

5 if (month < 1 && month > 12) { // Bug #1, should be ||, not &&
6 return "Invalid";
7 }
8

9 if (month == 1 || month == 2) {
10 return "Winter";
11 } else if (month == 4 || month == 4) { // Bug #2, should be
12 // month == 4 || month == 5
13 return "Spring";
14 } else if (month == 7 || month == 8) {
15 return "Summer";
16 } else if (month == 10 || month == 11) {
17 return "Fall";
18 }
19

20 System.out.print("Please enter the day (1 -31): ");
21 int day = console.next(); // Bug #3, should be console.nextInt ();
22

23 if ((month == 12 && day >= 21) || (month == 3 && day < 21)) {
24 return "Winter";
25 } else if ((month == 3 && day >= 21) || (month == 6 && day < 21)) {
26 return "Spring";
27 } else if ((month == 6 && day >= 21) || (month == 9 && day < 21)) {
28 return "Summer";
29 } else if (month == 9 && day >= 21 || (month == 12 && day < 21)) {
30 return "Fall";
31 }
32

33 return "Invalid";
34 }

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 8 of 16

4. General Programming 1

Write a static method called findChars that takes two parameters: a Scanner input and an
String targetChars. The method should prompt the user for words using the given Scanner until
the user inputs a word that contains all of the unique characters in targetChars (in any order).
Finally, the method should return the total number of characters the user has entered.

For example, assume the following variable is declared:

Scanner con = new Scanner(System.in);

The following table shows some sample calls to findChars and resulting output (user input is
bold and underlined):

Call findChars(con, "abc"); findChars(con, "mat"); findChars(con, "ELBA");
Output Next word: I Next word: Cause Next word: And

Next word: wanna Next word: we Next word: at
Next word: get Next word: are Next word: every
Next word: him Next word: living Next word: table
Next word: back! Next word: in Next word: oops

Next word: a Next word: TABLE!
Next word: material

Return 17 27 25

As shown in the above examples, your program should be able to handle lowercase and uppercase
alphabet characters, numbers, and punctuation. Your comparisons should be case-sensitive (as
shown in the ELBA example).

You may assume that targetChars always has at least one character. You may also assume that
targetChars has no duplicate characters.

Outside of whitespace, you should aim to exactly reproduce the output format above. As a re-
minder, you are restricted to the methods provided on the reference sheet.

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 9 of 16

Write your solution to problem #4 here:

Solution:

¨

1 public static int findChars(Scanner console , String targetChars) {
2 int charCount = 0;
3 boolean foundAllChars = false;;
4 while(! foundAllChars) {
5 System.out.print("Next word: ");
6 String word = console.next();
7 charCount += word.length ();
8

9 int charsFound = 0;
10

11 for (int i = 0; i < targetChars.length (); i++) {
12 // alternatively , targetChars.charAt(i) + ""
13 String currentChar = targetChars.substring(i, i+1);
14 if (word.contains(currentChar)) {
15 charsFound ++;
16 }
17 }
18

19 if (charsFound == targetChars.length ()) {
20 foundAllChars = true;
21 }
22 }
23 return charCount;
24 }

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 10 of 16

5. General Programming 2

After their Lottery Dreams (on Quiz 2) failed, Matt and Elba have one more Hail Mary plan to
make money: betting on coin flips! But they need help with the math – that’s where you come in!

Write a static method named howTheFlip that accepts a Random object and an integer (which we’ll
call numMoreTails) and simulates coin flips (using the Random object) until you flip numMoreTails
more tails than heads. In other words, you should stop only when the number of tails you’ve seen
is exactly numMoreTails more than the number of heads you’ve seen.

There are some specific notes about how this method should work:

• your coin flip should be “unbiased”; in other words, there should be a 50% chance of getting
heads and a 50% chance of getting tails on each flip.

• you may not assume that numMoreTails is positive. If the user passes in a value that is
less than 1, your method should not flip any coins. Instead, print out an “Invalid” message
and return 0.

Assuming that the following variable has been initialized:

Random randy = new Random();

Here are some example calls to the method with their resulting console output and return value:

Call Console Output Returned
howTheFlip(randy, 1) Flips: H, T, T 3

howTheFlip(randy, 2) Flips: T, H, T, H, T, T 6

howTheFlip(randy, 2) Flips: T, H, H, T, T, H, T, H, T, T 10

howTheFlip(randy, 0) Invalid numMoreTails: 0 0

howTheFlip(randy, -2) Invalid numMoreTails: -4 0

You must exactly reproduce the format of the console output shown above (other than whitespace),
though the actual output may differ due to randomness.

You are not permitted to create any additional data structures (e.g. arrays, ArrayLists) to solve
this problem. However, new variables for primitive data types are allowed. In addition, you should
not declare a new Random object within your method; you must use the one passed in by the user.

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 11 of 16

Write your solution to problem #5 here:

Solution:

1 public static int howTheFlip(Random randy , int numMoreTails) {
2 if (numMoreTails < 1) {
3 System.out.println("Invalid numMoreTails: " + numMoreTails);
4 return 0;
5 }
6

7 System.out.print("Flips: ");
8

9 int tailsBalance = 0;
10 int totalFlips = 0;
11

12 // pulling out one flip - fencepost
13 int flip = randy.nextInt (2);
14 totalFlips ++;
15

16 if (flip == 1) {
17 tailsBalance --;
18 System.out.print("H");
19 } else {
20 tailsBalance ++;
21 System.out.print("T");
22 }
23

24 while (tailsBalance != numMoreTails) {
25 System.out.print(", ");
26

27 flip = randy.nextInt (2);
28 totalFlips ++;
29

30 if (flip == 1) {
31 tailsBalance --;
32 System.out.print("H");
33 } else {
34 tailsBalance ++;
35 System.out.print("T");
36 }
37 }
38 return totalFlips;
39 }

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 12 of 16

6. Array Programming

Write a static method named repeatWords that accepts two parameters: an array of strings (which
we’ll call words), and an array of integers (which we’ll call repetitions). This method should
not return anything; instead, it should modify words by “repeating” each of its entries for the
corresponding number of times.

The simple case is when words and repetitions are the same length. This behavior is best
explained with an example. Assume that the following variables have been declared:

String[] words = {"Olivia", "Rodrigo", "GUTS "};
int[] repetitions = {1, 2, 4};

Calling repeatWords(words, repetitions) would return nothing and leave repetitions un-
changed. However, printing words would yield:

["Olivia", "RodrigoRodrigo", "GUTS GUTS GUTS GUTS "]

To break this example down:

1. for the first item in words, we repeat it 1 time (the corresponding value in repetitions),
giving us the original string: "Olivia"

2. for the second item in words, we repeat it 2 times (the corresponding value in repetitions),
converting "Rodrigo" to "RodrigoRodrigo"

3. for the third item in words, we repeat it 4 times (the corresponding value in repetitions),
converting "GUTS " to "GUTS GUTS GUTS GUTS ";

When words and repetitions are not the same length, you should ignore the “extra” items in the
larger array. In addition, if a value in repetitions is nonpositive (i.e. less than or equal to 0),
you should replace the corresponding entry in “words” with the empty string (i.e. ""). These rules
apply if one (or both) of the arrays is empty. Here are two examples that showcase this behaviour:

String[] words1 = {"Laufey", "Bewitched"};
String[] words2 = {"Laufey", "Bewitched"};
int[] repetitions1 = {3};
int[] repetitions2 = {2, -1, 4};

After calling repeatWords(words1, repetitions1), printing words1 would yield:

["LaufeyLaufeyLaufey", "Bewitched"]

After calling repeatWords(words2, repetitions2), printing words2 would yield:

["LaufeyLaufey", ""]

You are not permitted to create any additional data structures (e.g. arrays, ArrayLists) to solve
this problem. However, new variables for primitive data types are allowed. As a reminder, you are
restricted to the methods provided on the reference sheet.

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 13 of 16

Write your solution to problem #6 here:

Solution:

1 public static void repeatWords(String [] words , int[] repetitions) {
2 // this properly deals with if the two lengths are not equal
3 // if words.length > repetitions.length , skip the remaining words
4 // if reptitions.length > words.length , skip the remaining

repetitions
5 int wordsToRepeat = Math.min(words.length , repetitions.length);
6

7 for (int i = 0; i < wordsToRepeat; i++) {
8 // temp variable: necessary since we "reset" words[i]
9 String word = words[i];

10 words[i] = "";
11

12 // if repetitions[i] is <= 0, this will never run
13 // so, words[i] will remain "" - as desired
14 for (int j = 0; j < repetitions[i]; j++) {
15 words[i] += word;
16 }
17 }
18 }

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 14 of 16

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 15 of 16

Just for fun: As a thanks for all their work, draw your TA a picture of what you think they will be up
to during Spring Quarter! (not graded, not mandatory!)

TA Name:

Solution:

Name:

CSE 121 Winter 2024 Final Exam (Alternate) Page 16 of 16

This page is intentionally left blank and will not be graded; do not put exam answers here.

