
CSE 121 Spring 2024 Final Exam June 5, 2024

Name:

Section: Student Number (not UWNetID):

Rules/Guidelines:

• You must not begin working before time begins, and you must stop working promptly when time is called. Any
modifications to your exam (writing or erasing) before time begins or after time is called will result in a penalty.

• You are allowed one page of notes, no larger than 8.5 x 11 inches. You may not access any other resources or use
any electronic devices (including calculators, phones, or smart watches, among others) during the exam. Using
unauthorized resources or devices will result in a penalty.

• In general, you are limited to Java concepts or syntax covered in class. You may not use break, continue, a return
from a void method, try/catch, or Java 8 features.

• You are limited to the standard Java classes and methods listed on the provided reference sheet.
• You do not need to write import statements.
• If you abandon one answer and write another, clearly cross out the answer(s) you do not want graded and draw

a circle or box around the answer you do want graded. When in doubt, we will grade the answer that
appears in the space indicated, and the first such answer if there is more than one.

• If you require scratch paper, raise your hand and we will bring some to you. If you write an answer on scratch
paper, please write your name and clearly label which question you are answering on the scratch paper, and
clearly indicate on the question page that your answer is on scratch paper. Staple all scratch paper you want
graded to the end of the exam before turning in.

• Answers must be written as proper Java code. Pseudocode or comments will not be graded. However, the exam is
not graded on code quality. You are not required to include comments.

• You are also allowed to abbreviate "System.out.print" and "System.out.println" as "S.o.p" and "S.o.pln"
respectively. You may NOT use any other abbreviations.

Grading:

• Each problem will receive a single E/S/N grade.
• On problems 1 through 3, earning an E requires answering all parts correctly and earning an S requires answering

almost all parts correctly.
• On problems 4 through 6, earning an E requires an implementation that meets all stated requirements and behaves

exactly correctly in all cases. Earning an S requires an implementation that meets all stated requirements and
behaves exactly correctly in most cases or behaves nearly correctly in all cases.

• Minor syntax errors will be ignored as long as it is unambiguous what was intended (e.g. forgetting a semicolon,
misspelling a variable name where there is only one close option). Major syntax errors, or errors where it is unclear
what was intended, may have an impact on your grade.

Advice:

• Read all questions carefully. Be sure you understand the question before you begin your answer.
• The questions are not necessarily in order of difficulty. Feel free to skip around. Be sure you are able to at least

attempt every question.
• Write clearly and legibly. We cannot award credit for answers we cannot read.
• If you have questions, raise your hand to ask. The worst that can happen is we will say "I can’t answer that."
• Ask questions as soon as you have them. Do not wait until you have several questions.

Initial here to indicate you have read and agree to these rules:

CSE 121 Spring 2024 Final Exam Page 2 of 16

Name:

CSE 121 Spring 2024 Final Exam Page 3 of 16

1. Code Comprehension

(a) Trace the evaluation of the following expressions, and give their resulting values. Make sure
to give a value of the appropriate type. (i.e. Be sure to include a .0 at the end of a double
value, or "" around Strings.) Write your answer in the box to the right of each expression.

i. 3 * (4 % 2) * 1.0

Solution: 0.0

ii. 8 - 5.0 * 2 + ("2" + 5)

Solution: "-2.025"

iii. (15 % 5 == 3) || (!(5.0 - 4 == 1.0))

Solution: false

(b) Select all choices whose statements are true.
□ The for loop header for (int i = 0; i < arr.length; i++) would give an error

if the array arr was empty (i.e. had zero elements).
■ Calling nextInt(1) on a Random object always gives you 0.
■ The names of types (e.g. boolean) in Java are case-sensitive.
□ Scanner can only be used with while loops, not for loops.
□ Using == with Strings causes a compilation error.

Name:

CSE 121 Spring 2024 Final Exam Page 4 of 16

(c) Consider the following code:

public static int mystery(int n) {
if (n <= 1) {

return 0;
}

// Point A
int i = 0;
while (n > 1) {

if (n % 2 == 0) {
n = n / 2;
// Point B

} else {
n = 3 * n + 1;
// Point C

}
// Point D
i++;

}
// Point E
return i;

}

Assume that mystery is called. For each of the statements below, place a check (✓) in the
corresponding box if it is true.

□ At Point A, n <= 1 could be true.
■ At Point B, n <= 1 could be true.
□ At Point C, n <= 1 could be true.
■ At Point D, n <= 1 could be true.
□ At Point E, n <= 1 could be false.

Name:

CSE 121 Spring 2024 Final Exam Page 5 of 16

2. Array Code Tracing

Consider the following method:

public static int[] mystery(int[][] arr) {
int[] result = new int[arr.length];
int x = 0;
for (int i = 0; i < arr.length; i++) {

x += arr[i][i]; // Point X
}
for (int i = 0; i < arr.length; i++) {

for (int j = 0; j < arr[i].length; j++) {
result[j] += arr[i][j]; // Point Y
arr[i][j]--; // Point Z

}
}
for (int i = 0; i < arr.length; i++) {

result[i] = result[i] / x;
}
return result;

}

(a) Consider the following code:

int[][] arr = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
int[] result = mystery(arr);

What are the contents in arr after this code is executed? (please try to format the array in
“quick initialization” syntax, i.e. what is after int[][] arr = in the example)

Solution: {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}

(b) Consider the following code:

int[][] arr = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
int[] result = mystery(arr);

What are the contents in result after this code is executed? (please aim for clear syntax)

Solution: {0, 1, 1}

(c) Which statements are true about the mystery method?
■ Depending on arr, it is possible to get an index out of bounds error at Point X.
■ Depending on arr, it is possible to get an index out of bounds error at Point Y.
□ Depending on arr, it is possible to get an index out of bounds error at Point Z.
□ If we declared int[][] arr = {}, calling mystery(arr) will cause an error.
□ It is possible that arr and the returned array will have different lengths.

Name:

CSE 121 Spring 2024 Final Exam Page 6 of 16

3. Debugging

Matt’s been talking about Laufey so much ... but is he actually a real fan? Consider a static
method called spotifyRapped that prompts the user for listening data, and then tells them if they
are a “true fan” (using some data).

In particular, the spotifyRapped method takes in three parameters:

• a Scanner to get user input
• a String representing an artist
• an int array representing “listening data” for that artist, where each element is the number

of minutes a specific person has spent listening to that artist (not including the user)

The method should not return anything. Instead, it should:

1. prompt the user for the number of minutes they’ve spent listening to the artist
2. count the number of people who have listened to the artist for less time than the user (this

is how many people the user has “beat”), then calculate what percentage of the total number
of people this is.

3. depending on that percentage, call them a “true fan”, “bandwagoner”, or “casual listener”:
• if the user beat greater than or equal to 80% of people, they are a “true fan”
• if the user beat less than 40% of people, they are a “casual listener”
• otherwise, they are a “bandwagoner”

You may assume that the user always provides valid input (i.e. a nonnegative int) to the Scanner.
You may also assume that the array parameter has at least one element.

Here are results of two different example calls to a correct implementation of spotifyRapped.
Assume that console is a valid Scanner.

Example #1: “true fan”

int[] listens = {842, 523, 2, 1482, 23, 78};
spotifyRapped(console, "Laufey", listens)

would print (with user input in bold and underlined):

How many minutes have you listened to Laufey? 6726
You beat 6/6 other people; you’re a true fan!

Example #2: “bandwagoner”

int[] listens = {370, 76, 0, 37, 0, 6557, 39, 0, 0, 234};
spotifyRapped(console, "Reneé Rapp", listens)

would print (with user input in bold and underlined):

How many minutes have you listened to Reneé Rapp? 100
You beat 7/10 other people; you’re a bandwagoner!

Example #3: “casual listener”

int[] listens = {2346, 647, 0, 128, 7346};
spotifyRapped(console, "Chappell Roan", listens)

would print (with user input in bold and underlined):

How many minutes have you listened to Chappell Roan? 128
You beat 1/5 other people; you’re a casual listener!

Name:

CSE 121 Spring 2024 Final Exam Page 7 of 16

Consider the following proposed buggy implementation of spotifyRapped. This imple-
mentation contains three bugs that are causing it to not work as intended!

Your task: Annotate (write on) the code below to indicate how you would fix the three bugs. You
may add (using arrows to indicate where to insert), remove (by crossing out), or modify (with a
combination) any code you choose. Each fix is “local” (i.e. it should not require significant work).

• You must correctly identify three of the lines with issues, or correctly identify and fix two of the bugs
for an S grade.

• You must correctly identify all three lines with the bugs and correctly fix all three of the bugs for an
E grade.

1 public static void spotifyRapped(Scanner console ,
2 String artist , int[] listens) {
3

4 System.out.print("How many minutes have you listened to "
5 + artist + "?");
6

7 int minutesListened = console.next();
8

9 int numBeat = 0;
10

11 for (int i = 0; i < listens.length; i++) {
12 if (minutesListened > listens[i]) {
13 numBeat ++;
14 }
15 }
16

17 double beatPercentage = 100.0 * (numPeopleBeat / listens.length);
18

19 String fracAsString = numBeat + "/" + listens.length;
20 System.out.print("You beat " + fracAsString + " other people; ");
21

22 if (beatPercentage >= 80.0) {
23 System.out.println("you’re a true fan!");
24 }
25

26 if (beatPercentage < 40.0) {
27 System.out.println("you’re a casual listener!");
28 }
29

30 else {
31 System.out.println("you’re a bandwagoner!");
32 }
33

34 }

Name:

CSE 121 Spring 2024 Final Exam Page 8 of 16

4. General Programming 1

Write a static method called worseWordle that uses two parameters (a Scanner and a String word)
to play a “worse” version of the hit game Wordle. It should use the Scanner to continually prompt
the user for words until they properly guess the word, and finally return the number of guesses the
player made (including the winning guess) as an int.

No knowledge of the “real” Wordle is necessary. The rules of worseWordle are as follows:

• for the first turn, we print word.length() underscores (‘_’) and ask the user to guess
• until their guess is correct, we:

– print out the correctness of their last guess: for each character in their guess, if word has
the same character in that position, print the character; otherwise, print an underscore

– ask them to guess again
• once the user correctly guesses the word, we print out the word and a "You Won!" message

This is best explained with an example. Assume the following variable is declared:

Scanner console = new Scanner(System.in);

Then, calling worseWordle(console, "LAUFEY") would output the following
(user input is bold and underlined):

______ Guess: EILISH
______ Guess: WETLEG
____E_ Guess: MITSKI
______ Guess: LANADR
LA____ Guess: LAUFEY
LAUFEY You won!

And, the method call would return the value 5 (as we made 5 total guesses).

To break down this example:

1. before the first guess, we print six underscores (as "LAUFEY" has six characters
2. the user’s first guess ("EILISH") has no characters in the same position with "LAUFEY".
3. the user’s second guess ("WETLEG") has one character in the same position as "LAUFEY": the

‘E’ at index 4. So, we print that E, only for that turn.
4. the user’s third guess ("MITSKI") has no characters in the same position with "LAUFEY".
5. the user’s fourth guess ("LANADR") shares two characters in the same position as "LAUFEY":

the ‘L’ at index 0 and the ‘A’ at index 1, so we print them both.
6. the user’s fifth guess is correct, so we tell the user they won! (and return 5)

You may assume that:

• both word and the user’s guesses have at least one character (i.e. not empty or null)
• both word and the user’s guesses only consist of uppercase English alphabet characters
• the user’s guess will always be the same length as the word

Outside of whitespace, you should aim to exactly reproduce the output format above. As a re-
minder, you are restricted to the methods provided on the reference sheet, and you do not need to
write a main method or class declaration - just the method itself.

Name:

CSE 121 Spring 2024 Final Exam Page 9 of 16

Write your solution to problem #4 here:

Solution:

¨

1 public static int worseWordle(Scanner console , String word) {
2 for (int i = 0; i < word.length (); i++) {
3 System.out.print("_");
4 }
5

6

7 int guesses = 1;
8 System.out.print(" Guess: ");
9 String guess = console.next();

10

11 while (!guess.equals(word)) {
12 for (int i = 0; i < word.length (); i++) {
13 if (word.charAt(i) == guess.charAt(i) {
14 System.out.print(word.charAt(i));
15 } else {
16 System.out.print("_");
17 }
18 }
19

20 guesses ++;
21 System.out.print(" Guess: ");
22 guess = console.next();
23 }
24

25 System.out.println(word + " You won!");
26

27 return guesses;
28 }

Name:

CSE 121 Spring 2024 Final Exam Page 10 of 16

5. General Programming 2

Write a method called dateNight that takes in a Random object as a parameter and returns a
String that represents a random day, month, and year (in a particular format).

The logic for the method is as follows:

• the year can be any number between 2000 and 2099 (inclusive)

• the month can be any number between 1 and 12 (inclusive), where 1 represents January, 2
represents February, . . .

• the day has some rules. It should also start at 1, but:

– some months always have 31 days: January (1), March (3), May (5), July (7), August
(8), October (10), and December (12).

– some months always have 30 days: April (4), June (6), September (9), and November
(11).

– February (2) normally has 28 days. However, during a leap year — for the purposes of
this problem, years that are evenly divisible by 4 — February instead has 29 days.

While this method relies on randomness, its randomness should follow two properties:

1. any year and/or month should be equally likely

2. given a year and month, any valid day should be equally likely

Your method should return a random date in the format year-month-day. Unlike most calendars,
you do not need to add a leading 0 (i.e. April 1st, 2024 is 2024-4-1, not 2024-04-01).

Assume that we’ve declared a Random object called randy. Here are some examples of valid return
values from dateNight(randy):

• "2000-1-1" (the earliest valid date) and "2099-12-31" (the latest valid date)

• "2023-3-31" (March has 31 days) and "2019-11-30" (November has 30 days)

• "2024-2-29" (2024 (this year!) is a leap year — as it’s evenly divisible by 4 — so February
has 29 days)

• "2024-6-5" (today’s date!) and "2024-10-31" (Halloween, spooky!)

In contrast, here are some invalid dates:

• "1999-12-31" (too early) and "2100-1-1" (too late)

• "2024-4-31" (April only has 30 days) and "2024-8-32" (no month has 32 days)

• "2023-2-29" and "2026-2-29" (neither 2023 nor 2026 is a leap year — as neither is evenly
divisible by 4 — so February only has 28 days)

Your return value should exactly match the format described above (though the actual output
would differ due to randomness). You should not declare a new Random object within your method;
you must use the one passed in by the user.

As a reminder, you are restricted to the methods provided on the reference sheet, and you do not
need to write a main method or class declaration - just the method itself.

Name:

CSE 121 Spring 2024 Final Exam Page 11 of 16

Write your solution to problem #5 here:

Solution:

1 public static String dateNight(Random randy) {
2 int year = randy.nextInt (100) + 2000;
3 int month = randy.nextInt (12) + 1;
4

5 int day = 1;
6 if (month == 2) {
7 if (year % 4 == 0) {
8 day += randy.nextInt (29);
9 } else {

10 day += randy.nextInt (28);
11 }
12 } else if (month == 4 || month == 6 || month == 9 || month == 11) {
13 day += randy.nextInt (30);
14 } else {
15 day += randy.nextInt (31);
16 }
17

18 return year + "-" + month + "-" + day + "-";
19 }

Name:

CSE 121 Spring 2024 Final Exam Page 12 of 16

6. Array Programming

Write a static method named meanSquaredError that accepts two parameters, both arrays of
doubles (which we’ll call prediction and actual). It should calculate and return the “mean
squared error” of the two arrays as a double.

(as an aside: the mean squared error, or MSE, is a foundational tool in modern statistics!)

For the purposes of this problem, we define the mean squared error in two pieces:

• the error at an index i is the square of the difference between prediction[i] and actual[i]

• the mean squared error of two arrays is the mean (i.e. average) of the errors for each
individual pair of elements

Let’s walk through an example. Assume the following variables have been declared:

double[] prediction = {1.0, 5.0, 3.0};
double[] actual = {-1.0, 4.0, 4.0};

Calling meanSquaredError(prediction, actual) would return the value 2.0. This is because:

• there are three elements; their individual errors are

1. element 0: (1.0− (−1.0))2 = 2.02 = 4.0

2. element 1: (5.0− 4.0)2 = 1.02 = 1.0

3. element 2: (3.0− 4.0)2 = (−1.0)2 = 1.0

• thus, the mean squared error is (4.0 + 1.0 + 1.0)/3 = 6.0/3 = 2.0

If actual has more elements than prediction, your method should use 0.0 as the prediction’s
value. For example, given the following variables:

double[] prediction = {17.0};
double[] actual = {17.0, 6.0, 3.0};

Calling meanSquaredError(prediction, actual) would return the value 15.0. This is because:

• the errors are: (17.0− 17.0)2 = 0.0, (0.0− 6.0)2 = 36.0, and (0.0− 3.0)2 = 9.0

• thus, the mean squared error is (0.0 + 36.0 + 9.0)/3 = 45.0/3 = 15.0

In addition, your method must deal with two cases:

1. if prediction and actual are both empty, your method should return 0.0

2. if prediction has more elements than actual, your method should return -1.0

Your method does not have to deal with the case where prediction, actual, or both are null.

Your method should not modify the elements of prediction or actual in any way.

You are not permitted to create any additional data structures (e.g. arrays, 2D arrays, ArrayLists)
to solve this problem. However, new variables for primitive data types are allowed. As a reminder,
you are restricted to the methods provided on the reference sheet, and you do not need to write a
main method or class declaration - just the method itself.

Name:

CSE 121 Spring 2024 Final Exam Page 13 of 16

Write your solution to problem #6 here:

Solution:

1 public static double meanSquaredError(double [] prediction , double []
actual) {

2 if (prediction.length == 0 && actual.length == 0) {
3 return 0.0;
4 }
5

6 if (prediction.length > actual.length) {
7 return -1.0;
8 }
9

10 double total = 0.0;
11

12 for (int i = 0; i < actual.length; i++) {
13 if (i >= prediction.length) {
14 total += actual[i] * actual[i];
15 } else {
16 double diff = prediction[i] - actual[i];
17 total += diff * diff;
18 }
19 }
20

21 return total / actual.length;
22 }

Name:

CSE 121 Spring 2024 Final Exam Page 14 of 16

Name:

CSE 121 Spring 2024 Final Exam Page 15 of 16

Just for fun: as a thanks for all their work, draw your TA a picture of what you think they will be up
to during their Summer break! (not graded, not mandatory!)

TA Name:

Solution:

Name:

CSE 121 Spring 2024 Final Exam Page 16 of 16

This page is intentionally left blank and will not be graded; do not put exam answers here.

