
Section 14: Files
Introduction:​ Files are useful for reading and writing data because they exist ​outside​ of your programs. This
allows for lots of different possibilities: (1) you can store the result of your program execution somewhere more
permanent, (2) you can edit the data values between program executions, (3) you can pass data in files
between ​different​ programs, or (4) you can change the ​amount ​of data your program reads by modifying the
file contents and length.

Importing a File:​ There are more general ways to import files but in this course, we will be using data files in
c​omma-​s​eparated ​v​alues (CSV) format. The simplest way to import these kinds of files is to call the special
function ​loadStrings​(​String​ filename)​ and store its return value into a ​String​ array. Each ​line​ of the
file will be stored in a different index of the array (​i.e.​ the 1​st​ line will be in index 0, the 2​nd​ line in index 1, etc.)
as a ​String​.

● It is easiest if you put your CSV file into your Processing project folder and then you can just use the
filename as the argument.

● Like images, files should be imported ​once​ at the beginning of your program (​i.e.​ inside ​setup​()​ or at
the beginning of a ​static​ program).

As the name implies, each row/line of a CSV file contains values with columns separated by commas. So we
will want to ​split ​each row into its values using the function ​split​(​String​ s, ​char​ delim)​. This function
breaks ​s​ into pieces (returns a ​String​[]​) using ​delim​ as the ​delimiter​, a boundary marker between values.

● Note that ​split​()​ takes a ​String​, not a ​String​[]​, so it should be used on a ​row​ of imported data,
not the whole imported file.

Example​: String​[]​ ​importedData, header;
void ​setup​() {
 importedData = ​loadStrings​(​"data.csv"​);
 header = ​split​(importedData[0], ​","​); ​// split header/1st row
}

Converting Data:​ ​loadStrings​()​ imports your CSV file as a ​String​ array and ​split​()​ returns the
values in a row in a ​String​[]​ as well. However, if the file was not intended to be text, you will need to first
convert the data before you use it. Luckily, Processing has a handy set of ​conversion​ functions that will do this
for you! These conversion functions are intuitively named: ​char​()​, ​float​()​, ​int​()​, and ​str​()​.

Example​: String​ ​row = ​"120,3.14,hi"​;
String​[] vals = ​split​(row,​","​); ​// split into array of Strings
int ​i = ​int​(vals[0]); ​// stores 120
float ​f = ​float​(vals[1]); ​// stores 3.14
String ​s = vals[2]; ​// stores "hi" - no conversion needed

Exporting to a File:​ To save data to a file, we can use ​saveStrings​(​String​ filename, ​String​[]
data)​. If there is already an existing file at the path ​filename​, this will ​overwrite​ that file so be careful! For
CSV files, ​filename​ should end in ​".csv"​ and ​data​ should be an array of ​String​s, each using commas as
delimiters. Each index of ​data​ is written into the file as a separate line/row.

Example​: int​[] row1 = {1, 20, 120, -5};
float​[] row2 = {0.33, 1.41, 1.62, 2.71, 3.14};
String​[] data = {​str​(row1[0]), ​str​(row2[0])}; ​// include 1st columns
int​ i = 1;
while ​(i < row1.​length​) { ​// skip 1st entry
 data[0] = data[0] + ​", "​ + ​str​(row1[i]); ​// add commas and cols
 ​i = i+1;
}
int​ i = 1;
while ​(i < row2.​length​) { ​// skip 1st entry
 data[1] = data[1] + ​", "​ + ​str​(row2[i]); ​// add commas and cols
 ​i = i+1;
}
saveStrings​(​"myData.csv"​, data);

Exercises:

1) Go to the course website and find this section on the Course Schedule. Download “​file_ex.pde​” and
“​animals.csv​” to your computer and put both in a folder called ​file_ex​.
a) Open ​animals.csv​ in a ​text editor​ (​e.g.​ VS Code) to see what a CSV file looks like to Processing.
b) Open ​file_ex.pde​ in Processing and run it. It should print the word “​film​” to the console.
c) Read through the code and its comments and try to figure out what Line 23 (the ​print​()​ call) is doing.
d) Once you think you know how it works, go to ​animals.csv​ and modify ​only one​ ​entry ​so that running

file_ex.pde​ will now output “​file​” to the console instead. Ideally, you would use an actual animal
name! (​https://en.wikipedia.org/wiki/List_of_animals_by_common_name​)

e) Below, write your changed entry: ​old_animal​ → ​new_animal

2) [optional - tricky!] Now modify only Line 23 (the ​print​()​ call) of ​file_ex.pde​ in order to get the
program to print the word “​best​” to the console. Only two small changes are needed, but you’ll want to
stare at ​animals.csv​ a while (without changing it!) to identify the pattern that gets you “​best​”. Write your
new Line 23 below:

3) Go to the course website and continue working on the lab titled “Word Guessing.” [​partners​]

https://en.wikipedia.org/wiki/List_of_animals_by_common_name

