
Section 11: Arrays
Introduction: An array is a common data structure: a way of efficiently organizing and storing related data.
An array groups a set of pieces of data of the same variable type under a common name, with individual
elements referenced by a numbered index. In lecture, we used buckets to represent the indices of the array
and colored ping pong balls to represent the values stored in each index.

Arrays are useful in place of declaring many individual variables that will be used for similar purposes (e.g. the
position variables from Lego Family). Arrays can be used and manipulated easily in conjunction with loops.

Array Declaration: Just like with variables, you must declare an array before you can use it. But unlike
variables, array declarations come in two separate parts:

(1) Declaring the array variable is of the form: var_type[] array_name;

● var_type declares that your array will contain values of the specified data type.
● array_name is the name associated with the array. You should try to use an intuitive name that

indicates what the array is used for. Has the same naming restrictions as other variables.

(2) Creating the array itself is of the form: new var_type[len];

● var_type sets the data type/container mold of every index and must match that of your array variable.
● len is the number of indices that Processing will create in your array (i.e. its length). Note that we

always start counting indices from 0, so for len indices, they will be referenced as 0 , 1 , … , len-1 .

Examples: color[] myColors; // declares array variable; no array created
int[] familyX = new int[5]; // creates array for x-positions of the

 // 5 Simpsons characters

Array Initialization: Arrays differ from variables in that Processing will automatically initialize array values
when you create a new array. The default value in an array depends on the data type, but roughly equates to
“zero” in the various contexts: 0 (int), 0.0 (float), black (color), false (boolean).

Alternatively, you can initialize an array to chosen values using curly bracket ({}) notation, with values
separated by commas. Every value must match the variable type of your array variable and the size of the
array will depend on how many commas you use.

Examples: color[] myColors = new color[3]; // all indices contain black
int[] familyX = {1, 100, 5, 200, 400}; // inferred array size of 5

Using Arrays: To use the values in an array, we use the array variable name along with brackets to indicate
which index. The index can be specified using a hard-coded number or from the evaluation of an expression.
As a reminder, array indices start at 0 and go to len-1 (from left to right). The length of an array can be found
using the special notation: array_name. length

Examples: background(myColors[0]); // set to the color in index 0
familyX[familyX[0]] = familyX[4]; // set familyX[1] to 400
int len = familyX. length; // 5 based on initialization above

Exercises:

1) The following Processing statements contain errors. Find and fix them all.
Erroneous code: Fixed code:
int[3] intArray;

intArray = {0, 3.14, 6}

intArray[] = new int[7];

intArray[i+1;] = intArray[i];

2) Write out a Processing statement below to declare and initialize an array that holds the colors of a tricolour
flag of your choice (e.g. France, Germany, India, Mexico, Russia). Make sure that you give it an intuitive
and legal array name.

3) Complete the function below that adds 1 to every index of an array of floats:

void addOne(float[] ar) {

 int i = ___;

 while(i ___ __________) {

 ____________ ___ ____________;

 i ___ ___;
 }

}

4) Write out Processing code below to declare and initialize a length variable to 50, create an integer array of
that length (using the variable), and then use a loop to initialize the array values to their indices (i.e. index 0
holds value 0, index 1 holds value 1, etc.).

5) Describe in a sentence what you think the following function accomplishes. Hint: make a simple test array
and see what this function does to it!

void mystery(int[] ar) {
 int temp, front = 0, back = ar. length - 1;
 while(front < back) {
 temp = ar[front];
 ar[front] = ar[back];
 ar[back] = temp;
 }

}

6) Go to the course website and get started on the lab titled “Arrays and Elli.” [partners]

