
Section 6: Functions
Introduction:​ A ​function​ is a subroutine that can be referenced by name. In lecture, we likened this to the
chorus of a song: in-between verses you sing or play the same chorus without having to write out the same
thing all over again. In a computer program, a function is a set of instructions that execute when you ​call​ a
function. After the function is done, it will return to the point in the program that it was called from. Optionally,
a function may pass a ​return value​ back to its caller.

The main benefits of using functions are (1) decomposition of larger problems and (2) code reuse from
different places in your program. Code reuse can be ​identical,​ or ​similar​ if you use ​parameters​.

Function Definition:​ Because you are creating a subroutine from scratch, you need to tell Processing (1)
what it does and (2) how you plan to use it. The first line of a function definition is the ​function interface​ and
tells Processing how you will use the function: ​return_type​ ​function_name​(​type1​ param1, …)

● return_type​ is the data type of the return value. If there’s no return value, use ​void​ here instead.
● function_name​ is the name of your function. The naming rules follow those of variables.
● The ​parameter list​ is contained within the parentheses. This is a comma-separated list of variable

types and names. This will declare a set of variables that you can use ​only​ within your function. If you
are not using any parameters, you may leave the parentheses empty (but they are still required!).

After the function interface, the ​function body​ (what it does) is found within curly braces (​{} ​). Note that a
function definition does not require a semicolon! It is good practice to indent your function body so it is easy to
tell which statements are part of that function.

Examples​: void ​owl​(​int​ s) {
 ​// s is short for "scale"
 ​strokeWeight​(s/2);
 ​ellipse​(7*s, 7*s, 9*s, 12*s);
 ellipse​(5*s, 5*s, 4*s, 4*s);
 ellipse​(9*s, 5*s, 4*s, 4*s);
 ellipse​(5*s, 5*s, 1*s, 1*s);
 ellipse​(9*s, 5*s, 1*s, 1*s);
 triangle​(6*s,7*s, 8*s,7*s, 7*s,9*s);
}

int ​sum​(​int​ x, ​int ​y) {
 ​return ​x+y;
}

Calling Functions:​ Functions are called by name, followed by an ​argument list​ in parentheses. The
argument list corresponds to the parameter list from the function definition and provides the ​values​ that the
parameters get initialized to when your function executes.

● Argument values get assigned to parameters ​in order
● Argument values can be written explicitly or taken from variables.

Examples​: int​ ​z​;
z​ = ​sum​(5,10); // run sum() with x=5, y=10; store returned value in z
owl​(​z​); // draw an owl with s=15

Exercises:

1) The function ​mystery ​ is defined below. What value is returned by ​mystery(1) ​? What are ​all​ of the
possible return values of this function?

int​ ​mystery​(​int​ ​x​) {
 ​return ​min​(10, ​max​(0, 2* ​x​));
}

2) We’ve written a function that draws a cross. The plot below is the result of calling ​cross(2, 5, 3, 4) ​.
On the same plot, draw the result of calling ​cross(10, 10, 8, 6) ​.

3) Write a Processing function below that computes and returns the average of 3 given numbers.
Hint​: this function should take three ​float ​s as arguments.

4) Write a Processing function below that, when given two coordinates ​(x1,y1) ​ and ​(x2,y2) ​, draws a line
segment between the coordinates, places a point at the midpoint, and returns the length of the line
segment.

Hint 1​: The commands ​sq​() ​ and ​sqrt​() ​ compute the square and square root of a number, respectively.
Hint 2​: What should the data type of the return value be?

5) Go to the course website and get started on the homework titled “Animal Functions.” [​individual​]

