
Limits of Computing,
Course Wrap-Up

Sam Wolfson
CSE 120, Winter 2020

Take a look at the
worksheet and start

trying to fill it out!

Administrivia
• Assignments: just the final project!

• Instead of giving a presentation to the class, we ask that you
record a video of yourself presenting.
• If necessary, you and your partner can each present half separately then

cut the videos together afterwards.
• It’s OK to make a recording of your screen and talk over it.

• The assignment page and rubrics have been updated – please
read through them and let us know if you have questions or
concerns.

• Next week:
• We will plan to hold office hours remotely (details to come)
• The TAs and I will continue to monitor Piazza
• Remote lecture on Computing for Good

• Course evaluation: https://uw.iasystem.org/survey/221453

https://uw.iasystem.org/survey/221453

Revisiting Algorithm Complexity
• Recall: the runtime of an algorithm is based on the

size of its input (e.g., the size of an array)
• The “order of growth”

• Different algorithms have
different orders of growth:
• Constant
• Logarithmic
• Linear
• Quadratic
• Cubic
• Exponential

What problems do we encounter?

Unsolvable Problems

???

"Hard" problems: impossible to
solve in "reasonable" time

"Easy" problems:
solvable in

"reasonable" time

Problem Difficulty
• We call polynomial or faster problems “easy”
• Runtime ≤ 𝒪 𝑛! , where 𝑏 is a constant (𝒪 𝑛 , 𝒪(𝑛"), …)

• Exponential, factorial, & slower problems are “hard”
Easy Hard

“Easy” Problems
• Is this list sorted?

• Look at each number and make sure it's greater than
or equal to the one before it

• Do any two numbers in this array sum to 0?
• Check every number against every other number

• We say that these problems are "in P"
• They can be solved in polynomial time

Notice: these are all yes/no problems (i.e., decision problems)

“Hard” Problems
• Given the chess board, is there a move that white

can make that ensures white will eventually win?
• There is an answer.
• There's no way to compute it

in any reasonable time.

This problem is not “in P.” It takes exponential time.

Let’s solve some problems!
• Problem: is it possible to

color each node so that
no two directly connected
node are the same color?
• On the first page of your

worksheet, try to do this
using only two colors.

• Can you think of an
efficient algorithm for this?

Two nodes are adjacent if there is
an edge directly connecting them.
• A and B, B and C are adjacent.
• B and C are not.

2-Colored Graph
• Is it possible to color each node so that no two

directly connected nodes are the same color?
• Start with a random node, and fill

with a color
• Fill every adjacent node with the

other color
• Do the same thing with every node

adjacent to that node
• Repeat until:

• We find a node that can't be
either color → answer is NO

• The graph is completely filled
in → answer is YES

This problem is “in P” (only need to look at each node once)

Let’s solve some problems!
• Problem: is it possible to

color each node so that
no two directly connected
node are the same color?
• On the second page, try to

do the same thing, but
now you have three colors
to work with.
• Can you think of an

efficient algorithm for this?

Two nodes are adjacent if there is
an edge directly connecting them.
• A and B, B and C are adjacent.
• B and C are not.

3-Colored Graph
• Is it possible to color each node so that no two

directly connected nodes are the same color?
• Start with a random node, and fill with a color
• Fill all the adjacent nodes with a different color
• What if we reach a point where no colors will

work??
• Backtrack and try different colors

• Repeat until:
• We find a node where no combination of

other colors in the graph will make it
work → answer is NO

• The graph is completely filled in →
answer is YES

This problem is not “in P” (why?)

May need to try every
possible combination

of colors

3-Colored Graph
• Runtime for our algorithm: 𝒪(3!)

• In the worse case, we’d need to try every possible
combination of colors!

• Does a polynomial algorithm exist?
• This is an unsolved problem

This problem is “in NP”
We don’t know of any polynomial time solutions

But we haven’t been able to prove they don’t exist
We can easily check whether a solution is correct

Example: Exam Planning

Student CSE Courses

Sam 120, 440, 446

Eunia 120, 351, 446

Yae 120, 332, 440

Erika 120, 332, 351

Justin 120, 332, 351

We have three available exam slots.
How to schedule exams without conflicts?

446440

351332

120

Course

Student
taking both

courses

Monday Morning

Monday Afternoon

Tuesday MorningEquivalent to 3-coloring!

Called a reduction

P vs. NP
• P problems have polynomial time algorithms

• NP problems have solutions that can be efficiently
verified, but no known efficient way to find them

Big open problem in computer science: is P = NP?

$1 million
reward!

What if P=NP?

"If P=NP, then the world would be a profoundly
different place than we usually assume it to be.

There would be no special value in “creative leaps,”
no fundamental gap between solving a problem

and recognizing the solution once it’s found."

-Scott Aaronson

Beyond NP: Unsolvable Problems

• Are there problems that we can't solve, no matter
how much time you're given?
• Remember: an algorithm is only a solution if is

produces the correct answer in a finite amount of time
• A problem is decidable if it has a solution

• Some problems are undecidable

The Halting Problem
Is there a way to tell whether mystery will ever finish?

void mystery(String input) {
/* here be dragons */
.
.
.

}

Assume the function doesItHalt(String code, String args) exists:
• Input: a function's code code and the function's arguments args
• Output: true if that function halts, false if it doesn't

The Halting Problem
• Assume the function doesItHalt(String code, String args) exists:

• Input: a function’s code code and the function's arguments args
• Output: true if that function halts, false if it doesn't

• Can we fool this function?
void trickster(String code) {
if (doesItHalt(code, code)) {
while(true == true) { }; // run forever

} else {
return; // halt

}
}

What happens if we run trickster(code(trickster))?
(i.e., give it its own code as input)
• If doesItHalt returns true, then trickster will run forever.
• If doesItHalt returns false, then trickster will halt.

We’re checking if code
halts when given its own

code as input!

code(f) returns the
code for f as a String

Contradiction!
This means that
doesItHalt
cannot exist.

The Problem Complexity Zoo
Unsolvable Problems

NP problems: easy to verify
but (probably) hard to solve

"Hard" problems: impossible to
solve in "reasonable" time

"Easy” (P)
problems:

solvable in
"reasonable" time

For a more in-depth version of this lecture:
https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=245f2b87-13d4-42f8-a967-ab3c016ce30b

https://uw.hosted.panopto.com/Panopto/Pages/Viewer.aspx%3Fid=245f2b87-13d4-42f8-a967-ab3c016ce30b

Course Wrap-Up
• What We’ve Learned

• Lecture 1 Revisited

• Your Future Beyond CSE120

26

Source: DragoArt.com Source: Project Gutenberg

http://cdn.imgs.tuts.dragoart.com/how-to-draw-a-realistic-landscape-draw-realistic-mountains_1_000000010322_5.jpg
http://www.mirrorservice.org/sites/gutenberg.org/2/7/9/2/27922/27922-h/images/image_011.jpg

Computational Thinking
• It’s all about problem solving

• How to attack your problem in a way that a computer
can help

• Most important idea: abstraction!
• Detail removal and generalization help us decompose

complex problems
• Use bits to represent everything (i.e. digitization)
• Reuse and combine building blocks (algorithms) in

ways that hopefully scale well

Building Blocks of Algorithms
• Sequencing

• The application/execution of
each step of an algorithm in
the order given

• Iteration
• Repeat part of algorithm a

specified number of times

28

• Selection
• Use of conditionals to select

which instruction to execute
next

• Functional Abstraction
• Break larger problem into

smaller, reusable parts

fill(255);
rectMode(CORNERS);
rect(-r, -r, 0, r);
ellipse(0, -r/2, r, r);

if(mousePressed) {
fill(0,0,255);

}

int i=20;
while(i<40) {
line(i,40,i+60,80);
i=i+60;

}

Programming
• Learned our first programming language

• Processing (Java syntax)

• Iterative design cycle:
• The value of a precise specification
• Design, prototype, implement, and evaluate
• Testing and debugging

• Coding style and documentation
• Proper commenting and formatting are essential for

maintenance and collaboration

Some Big Ideas
• Computers can only do a small number of things

• Execute exactly what you tell it to

• Computing has physical and theoretical limits

• The Internet is a physical realm

• Data is constantly generated, stored, and analyzed
• And can be copied and distributed

• Machines can “think” and “learn”?
• AI & the importance of probability and training sets

30

Social Context and Impact
• Impacts of computing:

• Algorithms can have unintended consequences
• Privacy and security (or lack thereof)
• Social media influences the way we access and share

information
• Can improve the lives of those with disabilities (and

everyone else) as well as those in developing countries

• Design matters!
• Must keep in mind users and user interface
• What are the ethical implications and whose values are we

promoting?

Course Wrap-Up
• What We’ve Learned

• Lecture 1 Revisited
• Your Future Beyond CSE120

Why Study Computer Science?
• Massive impact on our lives and society as a

whole

• Increasingly useful for all fields of study and areas
of employment
• Farmer – machines to help farm, drones for pesticides
• Chef – analyze customer data: popular dishes, hours,

etc.
• Street Performers
• Dancer, Gymnast – monitor and evaluate performance,

diet, etc.

Computing in Your Future
• Computing and its data are inescapable

• You generate “digital footprints” all the time

• Computing is a regular part of every job
• Use computers and computational tools
• Generate and process data
• Dealing with IT people
• Understanding the computation portion of projects

• Our goal is to help you make sense of the “Digital
Age” that we now all live in

About Programming
• programming ≠ computational thinking

• Computational thinking is knowing how to break down and
solve a problem in a way that a computer can do it

• Programming is the tool you use to execute your solution
• We use programming in this course as a way of teaching

computational thinking

• Can be learned, just like any other skill
• It’s not black magic; no such thing as a “coding gene”
• Yes, at first it may be challenging and mind-bending – just

like learning your first non-native language
• My hope is that you will think differently after this course

Big Ideas of Computing
• Exposure to a broad range of topics in computer

science
• Not going to dive into the details
• These are the motivations & the applications for

programming (the tool)
• Focus on what to be aware of to navigate the digital world

• Goal: become “literate” in computing
• As new innovations arise, can you read about it, understand

its consequences, and form your own opinion?
• This course will ask you to read, discuss, and write about

computing

Course Wrap-Up
• What We’ve Learned

• Lecture 1 Revisited

• Your Future Beyond CSE120

Keep What You’ve Made!
• You’ve all done some amazing work!

• We will make a “Student Showcase” Piazza post

• Make sure your files and programs are saved
somewhere so you can access them later
• Can re-download from Canvas submissions if necessary
• Could be helpful as examples for future projects

• Portfolio
• Your website will remain live until you disable it or graduate
• You can download a copy of your website files using

Cyberduck

Giving Back to CSE 120
• Enjoyed the class? Lots of ways to help out!

• Feedback: course evaluations, feedback on final
“quiz”, send me an email with your thoughts 😊

• Examples: Permission to show your work to future
classes?
• I’ll make a “Student Showcase” Piazza post later

• Recommendations: CSE120 will hopefully be offered
in winter 2021 – tell your friends!

Future Courses
• Intro CS courses descriptions:

• https://www.cs.washington.edu/academics/ugrad/over
view/intro-courses

• Staff recommendations and descriptions:
• https://docs.google.com/presentation/d/1JP0tMaCgTW

YWM7ALeSNHWOqjv3iporODr1tB0rg8NvM/edit?usp
=sharing

https://www.cs.washington.edu/academics/ugrad/overview/intro-courses
https://docs.google.com/presentation/d/1JP0tMaCgTWYWM7ALeSNHWOqjv3iporODr1tB0rg8NvM/edit%3Fusp=sharing

More CS at UW
• CSE 142 + CSE 143: Computer Programming I/II

• Needed for declaring CSE major

• CSE 160 + CSE 163: Data Programming I/II
• Recommended to take 142 first

• CSE/STAT/INFO 180: Intro to Data Science
• A basic math prerequisite

• CSE 154: Web Programming
• Must have taken 142, 143, or 160

Social Implications Courses
• Informatics

• INFO 101: Social Networking Technologies
• INFO 102: Gender and Information Technology
• INFO 200: Intellectual Foundations of Informatics
• INFO 270: Calling Bullshit: Data Reasoning in a Digital

World

• Human Centered Design & Engineering
• HCDE 210: Explorations in Human Centered Design

No More CS at UW or Break
• You are now somewhat programming-literate

• Can automate tasks to make your life easier
• More aware of possibilities of computing
• Easier to interact with IT/CS staff at work

• Figure out what will be most useful to you
• Some languages specific to type of work

(e.g. R, MATLAB, Ruby on Rails, SQL)
• Learn on your own via the Internet:

Making the Most of College
• Seek out experiences that lead to new experiences

• Build skills, interests, rela/onships
• Meet new people, join interes/ng clubs, go on adventures

• Don’t go it alone – find a friend group for classes

• Take advantage of educa<onal opportuni<es
• Research: h"ps://www.washington.edu/undergradresearch/students/find/

• Student Groups: ACM, Anima/on Research Labs, Husky Robo/cs, WOOF3D,
etc.

• Classes: non-major courses, P.E., languages, anything of interest

• Take care of yourself ☺

https://www.washington.edu/undergradresearch/students/find/
https://www.cs.washington.edu/acm/
http://www.cs.washington.edu/research/ap
https://www.huskyrobotics.me/
http://students.washington.edu/woof3d/

Making the Most of Our Future
• Computing is resurfacing our world

• Now almost everyone has access to everything, always
• New technology affects privacy, jobs, safety, beliefs, etc.

• You now know the most important parts of how it all works!
• Can bring computing to new fields/jobs/areas
• Keep these considerations in mind as you use and/or build things

Thanks for a great quarter!
• Huge thanks to your awesome TAs!

• Thanks to course content creators:

• Best of luck in the future! I am happy to chat more if
you have questions about CSE, college, etc.

