Timing & Algorithmic Complexity

Sam Wolfson
CSE 120, Winter 2020
• Portfolio Update 2 due tonight!
• Tic-Tac-Toe due Friday
 • The focus of section this week
 • Check off or submit on Canvas
• Quiz 4 on Friday
• Living Computers Museum Report due Monday
 • Go this weekend if you haven’t yet!
 • TAs will post on Piazza about when they will be there.
• Also in section this week: brainstorming final project ideas!
• Section next week: Innovation Exploration Presentations
Outline

• What is algorithm analysis?
• How can we compare how long algorithms take?
• How can we “formalize” how long an algorithm takes?
• How can we optimize our algorithms?
Reprise: Algorithm Correctness

• Correctness is probably the most important aspect by which we can analyze algorithms.

• An algorithm is considered **correct** if, for every input, it:
 • returns the correct output,
 • doesn’t run forever, and
 • doesn’t cause an error.

• Incorrect algorithms could run forever, or crash, or not return the correct answer.
Algorithm Analysis: Timing

• One way to analyze algorithms: **computation time**
 • How long does it take to run and finish its job?

• We can use this to compare efficiency of two different algorithms that solve the same task.
 • Example: multiple ways to sort a list

• But how can we measure time?
 • Counting in your head
 • With a stopwatch
 • **Within the program itself**
Timing in Processing

• The function `millis()` returns the number of milliseconds since starting your program (as an int).

 • To start timing, call and store the value in a variable:
    ```java
    int startTime = millis();
    ```

 • Call again after your function is complete, and subtract:
    ```java
    void draw() {
        int startTime = millis();
        computeSomething();
        int totalTime = millis() - startTime;
        println("Took " + totalTime + " ms");
    noLoop();
    }
    ```
Outline

• What is algorithm analysis?
• How can we compare how long algorithms take?
• How can we “formalize” how long an algorithm takes?
• How can we optimize our algorithms?
Algorithm Example: Fibonacci

• Function: Fibonacci
 • fibonacci(1) = 1
 • fibonacci(2) = 1
 • fibonacci(3) = fibonacci(1) + fibonacci(2) = 1 + 1 = 2
 • fibonacci(n) = fibonacci(n – 2) + fibonacci(n – 1)

• Code: Fibonacci

```c
int fibonacci(int n) {
    if (n == 1 || n == 2) {
        return 1;
    }
    return fibonacci(n-1) + fibonacci(n-2);
}
```

• Let’s see it in action...
Comparison: Fibonacci

• One of our Fibonacci functions seemed a lot faster than the other one – why?

• Let’s look at a more concrete way to figure it out.

• We can analyze time without ever getting out millis(), just by reasoning our way through an algorithm!
Outline

• What is algorithm analysis?
• How can we compare how long algorithms take?
• How can we “formalize” how long an algorithm takes?
• How can we optimize our algorithms?
How To Analyze Algorithmic Time

• Silly Example Function: SumPlus1
 • Input: an array of ints
 • Output: the sum of all ints in the array, plus 1

• Code: SumPlus1
  ```java
  int sumPlus1(int[] array) {
    int sum = 0;
    int i = 0;
    while (i < array.length) {
      sum = sum + array[i];
      i = i + 1;
    }
    sum = sum + 1;
    return sum;
  }
  ```
How To Analyze Algorithmic Time

• **Cost:** the amount of time it takes to do something.

 • The cost of a “simple” line of code (i.e., no function calls or loops) is 1 “time.”

    ```
    int z = x + y;  // cost: 1
    ```

 • The cost of a loop is the cost of all the lines of code inside of it, multiplied by the number of times it loops.
    ```
    int i = 0;
    while (i < n) {  // cost: 2 * n
      int x = 3;   // cost: 1
      i = i + 1;   // cost: 1
    }
    ```

 • The cost of a function is the sum of the cost of all the lines of code within the function.
Analysis of SumPlus1

```c
int sumPlus1(int[] array) {
    int sum = 0;
    int i = 0;
    while (i < array.length) {
        sum = sum + array[i];
        i = i + 1;
    }
    sum = sum + 1;
    return sum;
}
```

Let the length of `array` be equal to `n`. Then the total cost is:

\[
\text{cost}(n) = 1 + 1 + (2 \times n) + 1 + 1 = 2n + 4
\]
Analysis of SumPlus1

• When analyzing functions, we only care about the term that grows the fastest.

• For cost(n) = 2n + 4, which term is this?
 • 4 is constant – it never grows no matter how large n becomes.
 • 2n, however, grows linearly with n – so it is the fastest-growing term in this cost.

• cost(n) ≈ 2n
 • Furthermore, we don’t really care about the 2, since it’s constant.

• O(n) = n
 • We call this “Big-Oh” notation – we’re only concerned with the fastest-growing term, and with the parts of it that actually grow.
Time Complexity

• The amount of time it takes to run an algorithm.
 • The fastest-growing term in the cost function (“order of growth”).
 • Written in terms of the size \(n \) of the input (e.g., number of elements in an array, \(n^{th} \) Fibonacci number) with “Big-Oh” notation.
Time Analysis: Fibonacci

```c
int fibonacci(int n) {
    if (n == 1 || n == 2) {
        return 1;
    }
    return fibonacci(n-1) + fibonacci(n-2);
}
```

Everything inside `fibonacci` besides the recursive call is just $O(1)$. This is also called “constant time” since it doesn’t grow as n grows.
How many times do we call `fibonacci` for $n = 6$?
Relax!

• Let’s relax this problem a bit.

All I’ve done is filled in the missing nodes to make the tree “full”

• How many circles are there on this tree?
 • cost(n) = ??? = 31
Relax!

• Let’s relax this problem a bit.

• How many circles are there on this tree?
 • \(\text{cost}(n) = 2^5 - 1 = 31 \)

All I’ve done is filled in the missing nodes to make the tree “full”
Relax!

- Let’s relax this problem a bit.

- How many circles are there on this tree?
 - \(\text{cost}(n) = 2^{n-1} - 1 = 31 \)

- So what’s the time cost?
 - \(\text{cost}(n) = 2^{n-1} - 1 \approx O(2^n) \)

All I’ve done is filled in the missing nodes to make the tree “full”
Big oof...

- Remember that the time taken by SumPlus1 was $\mathcal{O}(n)$.

- Can we do better? (Yes!)
Outline

• What is algorithm analysis?
• How can we compare how long algorithms take?
• How can we “formalize” how long an algorithm takes?
• How can we optimize our algorithms?
Improving Fibonacci

• Which calculations here are redundant? Most of them!

By remembering the calculations we already performed, we can save a lot of time. $f(6)$ now only needs 6 function calls (not 15).

• This looks a lot more like $\mathcal{O}(n)$.
Speedy Fibonacci

```c
int fibonacci(int n) {
    if (isStored(n)) {
        return getStored(n);
    }
    if (n == 1 || n == 2) {
        return 1;
    }
    int fibN = fibonacci(n-1) + fibonacci(n-2);
    store(n, fibN);
    return fibN;
}
```

Assume that isStored, getStored, and store all have constant cost ($O(1)$).

Now, we only need to compute each number once!
Memoization

- The programming technique of remembering previous calculations so we don’t need to redo them every time.
 - As we saw with fibonacci, this can save a lot of time!
Who Cares???

• In The Real World™, most algorithms aren’t as simple to optimize (or as bad when not optimized) as fibonacci.

• But some applications, even small improvements can be helpful when \(n \) gets really large.
 • For Facebook, \(n \) (number of users) is \(\approx 1 \) billion!
 • Want to generate a list of suggested friends? You’d better have a fast algorithm as a function of \(n \).
Summary

- There are many ways we can analyze algorithms, such as for correctness.
- Analyzing the **time complexity** of an algorithm is useful for determining how long it will take when the input gets large.
 - Time complexity can be analyzed within your code using `millis()` to see how long a function takes to run.
 - It can also be analyzed by reasoning through the code and understanding how long each piece takes, then finding a cost function `cost(n)` where `n` is the size of the input.
- Time complexity is expressed in “Big-Oh” notation, where we drop all the pieces of the cost function except the one that **grows the fastest**. We call the fastest-growing term **the order of growth**.