Timing & Algorithmic Complexity

The Programmers’ Credo: we do these things not because they are easy, but because we thought they were going to be easy

Sam Wolfson
CSE 120, Winter 2020
Administrivia

- Portfolio Update 2 due tonight!
- Tic-Tac-Toe due Friday
 - The focus of section this week
 - Check off or submit on Canvas
- Quiz 4 on Friday
- Living Computers Museum Report due Monday
 - Go this weekend if you haven’t yet!
 - TAs will post on Piazza about when they will be there.
- Also in section this week: brainstorming final project ideas!
- Section next week: Innovation Exploration Presentations
Innovation Exploration

• Explore a topic in the broad field of computing and its implications on society.

• You will give a 3-5-minute presentation aimed at teaching others about a computing-related innovation that is interesting to you, including:
 • Purpose
 • Effects & Impacts
 • Technical Aspects

• You will have a large degree of freedom concerning the topic of your presentation and you will be presenting to the rest of the class on March 3 or March 5 during section.
Collaboration Expectations

• In this course, we did not give a strong definition of the line between collaboration and cheating.

• Compared to other CSE courses, we have been very relaxed about what constitutes cheating.
 • Here, we really want to encourage collaboration.
 • Particularly in courses that count for admission (CSE 14x) you will need to be more cognizant.

• As a general rule: you should discuss high-level concepts and ideas with your classmates, but you shouldn’t be sharing specific lines of code.
Outline

• What is algorithm analysis?
• How can we compare how long algorithms take?
• How can we “formalize” how long an algorithm takes?
• How can we optimize our algorithms?
Reprise: Algorithm Correctness

• Correctness is probably the most important aspect by which we can analyze algorithms.

• An algorithm is considered correct if, for every input, it:
 • returns the correct output,
 • doesn’t run forever, and
 • doesn’t cause an error.

• Incorrect algorithms could run forever, or crash, or not return the correct answer.
Algorithm Analysis: Timing

• One way to analyze algorithms: computation time
 • How long does it take to run and finish its job?

• We can use this to compare efficiency of two different algorithms that solve the same task.
 • Example: multiple ways to sort a list

• But how can we measure time?
 • Counting in your head
 • With a stopwatch
 • Within the program itself
Timing in Processing

- The function `millis()` returns the number of milliseconds since starting your program (as an int).
 - To start timing, call and store the value in a variable:
    ```java
    int startTime = millis();
    ```
 - Call again after your function is complete, and subtract:
    ```java
    void draw() {
        int startTime = millis();
        computeSomething();
        int totalTime = millis() - startTime;
        println("Took " + totalTime + " ms");
        noLoop();
    }
    ```
Outline

• What is algorithm analysis?
• How can we compare how long algorithms take?
• How can we “formalize” how long an algorithm takes?
• How can we optimize our algorithms?
Algorithm Example: Fibonacci

• Function: Fibonacci
 • fibonacci(1) = 1
 • fibonacci(2) = 1
 • fibonacci(3) = fibonacci(1) + fibonacci(2) = 1 + 1 = 2
 • fibonacci(n) = fibonacci(n – 2) + fibonacci(n – 1)

• Code: Fibonacci

```cpp
int fibonacci(int n) {
    if (n == 1 || n == 2) {
        return 1;
    }
    return fibonacci(n-1) + fibonacci(n-2);
}
```

• Let’s see it in action…
Comparison: Fibonacci

• One of our Fibonacci functions seemed a lot faster than the other one – why?

• Let’s look at a more concrete way to figure it out.

• We can analyze time without ever getting out millis(), just by reasoning our way through an algorithm!
Outline

- What is algorithm analysis?
- How can we compare how long algorithms take?
- How can we “formalize” how long an algorithm takes?
- How can we optimize our algorithms?
How To Analyze Algorithmic Time

• Silly Example Function: SumPlus1
 • **Input**: an array of ints
 • **Output**: the sum of all ints in the array, plus 1

• Code: SumPlus1
  ```java
  int sumPlus1(int[] array) {
      int sum = 0;
      int i = 0;
      while (i < array.length) {
          sum = sum + array[i];
          i = i + 1;
      }
      sum = sum + 1;
      return sum;
  }
  ```
How To Analyze Algorithmic Time

• **Cost:** the amount of time it takes to do something.

 • The cost of a “simple” line of code (i.e., no function calls or loops) is 1 “time.”

    ```
    int z = x + y; // cost: 1
    ```

 • The cost of a loop is the cost of all the lines of code inside of it, multiplied by the number of times it loops.

    ```
    int i = 0; // cost: 1
    while (i < n) {
      // cost: 2 * n
      int x = 3; // cost: 1
      i = i + 1; // cost: 1
    }
    ```

 • The cost of a function is the sum of the cost of all the lines of code within the function.
Analysis of SumPlus1

```java
int sumPlus1(int[] array) {
    int sum = 0;
    int i = 0;
    while (i < array.length) {
        sum = sum + array[i];
        i = i + 1;
    }
    sum = sum + 1;
    return sum;
}
```

Let the length of `array` be equal to \(n\). Then the total cost is:

\[
cost(n) = 1 + 1 + (2 \times n) + 1 + 1 = 2n + 4
\]
Analysis of SumPlus1

• When analyzing functions, we only care about the term that \textbf{grows the fastest}.

• For \(\text{cost}(n) = 2n + 4\), which term is this?
 • 4 is constant – it never grows no matter how large \(n\) becomes.
 • \(2n\), however, grows linearly with \(n\) – so it is the fastest-growing term in this cost.

• \(\text{cost}(n) \approx 2n\)
 • Furthermore, we don’t really care about the 2, since it’s constant.

• \(\mathcal{O}(n) = n\)
 • We call this “Big-Oh” notation – we’re only concerned with the \textbf{fastest-growing term}, and with the parts of it that \textbf{actually grow}.
Time Complexity

- The amount of time it take to run an algorithm.
 - The fastest-growing term in the cost function ("order of growth").
 - Written in terms of the size n of the input (e.g., number of elements in an array, n^{th} Fibonacci number) with "Big-Oh" notation.
Time Analysis: Fibonacci

```c
int fibonacci(int n) {
    if (n == 1 || n == 2) {
        return 1;
    }
    return fibonacci(n-1) + fibonacci(n-2);
}
```

Everything inside `fibonacci` besides the recursive call is just \(\Theta(1) \). This is also called “constant time” since it doesn’t grow as \(n \) grows.
Time Analysis: Fibonacci

How many times do we call `fibonacci` for $n = 6$?
Relax!

- Let’s relax this problem a bit.

- How many circles are there on this tree?
 - $\text{cost}(n) = ??? = 31$

All I’ve done is filled in the missing nodes to make the tree “full”
Relax!

• Let’s relax this problem a bit.

• How many circles are there on this tree?
 • \(\mathcal{C}_6 \)
 • \(\text{cost}(n) = 2^5 - 1 = 31 \)

All I’ve done is filled in the missing nodes to make the tree “full”
Relax!

- Let’s relax this problem a bit.
- How many circles are there on this tree?
 - cost\((n) = 2^{n-1} - 1 = 31 \)
- So what’s the time cost?
 - cost\((n) = 2^n - 1 \approx O(2^n) \)

All I’ve done is filled in the missing nodes to make the tree “full”.
Big oof...

• Remember that the time taken by SumPlus1 was $\mathcal{O}(n)$.

• Can we do better? (Yes!)
Outline

• What is algorithm analysis?
• How can we compare how long algorithms take?
• How can we “formalize” how long an algorithm takes?
• How can we optimize our algorithms?
Improving Fibonacci

• Which calculations here are redundant? **Most of them!**

By remembering the calculations we already performed, we can save a lot of time. \(f(6) \) now only needs 6 function calls (not 15).

• This looks a lot more like \(\mathcal{O}(n) \).
int fibonacci(int n) {
 if (isStored(n)) {
 return getStored(n);
 }
 if (n == 1 || n == 2) {
 return 1;
 }
 int fibN = fibonacci(n-1) + fibonacci(n-2);
 store(n, fibN);
 return fibN;
}
Memoization

• The programming technique of remembering previous calculations so we don’t need to redo them every time.
 • As we saw with fibonacci, this can save a lot of time!
Who Cares???

• In The Real World™, most algorithms aren’t as simple to optimize (or as bad when not optimized) as fibonacci.

• But some applications, even small improvements can be helpful when n gets really large.
 • For Facebook, n (number of users) is ≈ 1 billion!
 • Want to generate a list of suggested friends? You’d better have a fast algorithm as a function of n.
Summary

• There are many ways we can analyze algorithms, such as for correctness.

• Analyzing the time complexity of an algorithm is useful for determining how long it will take when the input gets large.
 • Time complexity can be analyzed within your code using millis() to see how long a function takes to run.
 • It can also be analyzed by reasoning through the code and understanding how long each piece takes, then finding a cost function cost(n) where n is the size of the input.

• Time complexity is expressed in “Big-Oh” notation, where we drop all the pieces of the cost function except the one that grows the fastest. We call the fastest-growing term the order of growth.

\[2^n + n^3 + n \]