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Administrivia
• Portfolio Update 2 due tonight!

• Tic-Tac-Toe due Friday
• The focus of section this week
• Check off or submit on Canvas

• Quiz 4 on Friday

• Living Computers Museum Report due Monday
• Go this weekend if you haven’t yet!
• TAs will post on Piazza about when they will be there.

• Also in section this week: brainstorming final project ideas!

• Section next week: Innovation Exploration Presentations



Innovation Exploration
• Explore a topic in the broad field of computing and its 

implications on society. 

• You will give a 3-5-minute presentation aimed at teaching 
others about a computing-related innovation that is 
interesting to you, including:
• Purpose
• Effects & Impacts
• Technical Aspects

• You will have a large degree of freedom concerning the 
topic of your presentation and you will be presenting to 
the rest of the class on March 3 or March 5 during section.



Collaboration Expectations
• In this course, we did not give a strong definition of the 

line between collaboration and cheating.

• Compared to other CSE courses, we have been very 
relaxed about what constitutes cheating.
• Here, we really want to encourage collaboration.
• Particularly in courses that count for admission (CSE 14x) you will 

need to be more cognizant.

• As a general rule: you should discuss high-level concepts 
and ideas with your classmates, but you shouldn’t be 
sharing specific lines of code.



Outline
• What is algorithm analysis?

• How can we compare how long algorithms take?

• How can we “formalize” how long an algorithm takes?

• How can we optimize our algorithms?



Reprise: Algorithm Correctness
• Correctness is probably the most important aspect by 

which we can analyze algorithms.

• An algorithm is considered correct if, for every input, it:
• returns the correct output,
• doesn’t run forever, and
• doesn’t cause an error.

• Incorrect algorithms could run forever, or crash, or not 
return the correct answer.



Algorithm Analysis: Timing
• One way to analyze algorithms: computation time

• How long does it take to run and finish its job?

• We can use this to compare efficiency of two different 
algorithms that solve the same task. 
• Example: multiple ways to sort a list

• But how can we measure time?
• Counting in your head
• With a stopwatch
• Within the program itself



Timing in Processing
• The function millis() returns the number of milliseconds 

since starting your program (as an int).
• To start timing, call and store the value in a variable:
int startTime = millis();

• Call again after your function is complete, and subtract:
void draw() {
int startTime = millis();
computeSomething();
int totalTime = millis() - startTime;
println(“Took “ + totalTime + “ ms”);
noLoop();

}



Outline
• What is algorithm analysis?

• How can we compare how long algorithms take?

• How can we “formalize” how long an algorithm takes?

• How can we optimize our algorithms?



Algorithm Example: Fibonacci
• Function: Fibonacci

• !ibonacci 1 = 1

• !ibonacci 2 = 1
• !ibonacci 3 = !ibonacci 1 + !ibonacci 2 = 1 + 1 = 2

• !ibonacci 𝑛 = !ibonacci 𝑛 − 2 + !ibonacci 𝑛 − 1

• Code: Fibonacci
int fibonacci(int n) {

if (n == 1 || n == 2) {
return 1;

}
return fibonacci(n-1) + fibonacci(n-2);

}

• Let’s see it in action…



Comparison: Fibonacci
• One of our Fibonacci functions seemed a lot faster than 

the other one – why?

• Let’s look at a more concrete way to figure it out.

• We can analyze time without ever getting out millis(), 
just by reasoning our way through an algorithm!



Outline
• What is algorithm analysis?

• How can we compare how long algorithms take?

• How can we “formalize” how long an algorithm takes?

• How can we optimize our algorithms?



How To Analyze Algorithmic Time
• Silly Example Function: SumPlus1

• Input: an array of ints
• Output: the sum of all ints in the array, plus 1

• Code: SumPlus1
int sumPlus1(int[] array) {

int sum = 0;
int i = 0;
while (i < array.length) {

sum = sum + array[i];
i = i + 1;

}
sum = sum + 1;
return sum; 

}



How To Analyze Algorithmic Time

• Cost: the amount of time it takes to do something.
• The cost of a “simple” line of code (i.e., no function calls or loops) 

is 1 “time.”
int z = x + y; // cost: 1

• The cost of a loop is the cost of all the lines of code inside of it, 
multiplied by the number of times it loops.
int i = 0;
while (i < n) { // cost: 2 * n

int x = 3; // cost: 1
i = i + 1; // cost: 1

}

• The cost of a function is the sum of the cost of all the lines of code 
within the function.



Analysis of SumPlus1
int sumPlus1(int[] array) {
int sum = 0;
int i = 0;
while (i < array.length) {
sum = sum + array[i];
i = i + 1;

}
sum = sum + 1;
return sum; 

}

Cost: 1

Cost: 1

Cost: 1

Cost: 1

Cost: 1

Cost: 1

Loop Cost:
2 * 

array.length

Let the length of array be equal to 𝑛. Then the total cost is:

cost 𝑛 = 1 + 1 + 2 ∗ 𝑛 + 1 + 1 = 2𝑛 + 4



Analysis of SumPlus1
• When analyzing functions, we only care about the term 

that grows the fastest.

• For cost 𝑛 = 2𝑛 + 4, which term is this?
• 4 is constant – it never grows no matter how large 𝑛 becomes.
• 2𝑛, however, grows linearly with 𝑛 – so it is the fastest-growing 

term in this cost.

• cost(𝑛) ≈ 2𝑛
• Furthermore, we don’t really care about the 2, since it’s constant.

• 𝒪 𝑛 = 𝑛
• We call this “Big-Oh” notation – we’re only concerned with the 

fastest-growing term, and with the parts of it that actually grow.



Time Complexity
• The amount of time it take to run an algorithm.

• The fastest-growing term in the cost function (“order of growth”).
• Written in terms of the size 𝑛 of the input (e.g., number of elements 

in an array, 𝑛th Fibonacci number) with “Big-Oh” notation.



Time Analysis: Fibonacci
int fibonacci(int n) {
if (n == 1 || n == 2) {
return 1;

}
return fibonacci(n-1) + fibonacci(n-2);

}

Everything inside fibonacci besides the recursive call is 
just 𝒪(1). This is also called “constant time” since it doesn’t 
grow as 𝑛 grows.

Cost: 1

Cost: ????



Time Analysis: Fibonacci
,ibonacci(6)

𝑓(5) 𝑓(4)

𝑓(4) 𝑓(3) 𝑓(3) 𝑓(2)

𝑓(3) 𝑓(2) 𝑓(2) 𝑓(1) 𝑓(2) 𝑓(1)

𝑓(2) 𝑓(1)

1

1111

11

1

How many times do we call fibonacci for 𝑛 = 6?



Relax!
• Let’s relax this problem a bit.

• How many circles are there on this tree?
• cost 𝑛 = ??? = 31

All I’ve done is filled 
in the missing nodes 

to make the tree “full”



Relax!
• Let’s relax this problem a bit.

• How many circles are there on this tree?
• cost 𝑛 = 2! − 1 = 31

All I’ve done is filled 
in the missing nodes 

to make the tree “full”



Relax!
• Let’s relax this problem a bit.

• How many circles are there on this tree?
• cost 𝑛 = 2"#$ − 1 = 31

• So what’s the time cost?
• cost 𝑛 = 2"#$ − 1 ≈ 𝒪(2")

All I’ve done is filled 
in the missing nodes 

to make the tree “full”



Big oof…
• Remember that the time taken by SumPlus1 was 𝒪 𝑛 .

• Can we do better? (Yes!)



Outline
• What is algorithm analysis?

• How can we compare how long algorithms take?

• How can we “formalize” how long an algorithm takes?

• How can we optimize our algorithms?



Improving Fibonacci
• Which calculations here are redundant?

By remembering the calculations we already performed, we can 
save a lot of time. 𝑓(6) now only needs 6 function calls (not 15).

• This looks a lot more like 𝒪 𝑛 .

!ibonacci(6)

𝑓(5) 𝑓(4)

𝑓(4) 𝑓(3) 𝑓(3) 𝑓(2)

𝑓(3) 𝑓(2) 𝑓(2) 𝑓(1) 𝑓(2) 𝑓(1)

𝑓(2) 𝑓(1)

1

1111

11

1

Most of them!



Speedy Fibonacci 🏎
int fibonacci(int n) {
if (isStored(n)) {
return getStored(n);

}
if (n == 1 || n == 2) {
return 1;

}
int fibN = fibonacci(n-1) + fibonacci(n-2);
store(n, fibN);
return fibN;

}

Assume that isStored, 
getStored, and store all 
have constant cost (𝒪(1)).

Now, we only need to 
compute each number once!



Memoization
• The programming technique of 

remembering previous calculations so 
we don’t need to redo them every time.
• As we saw with fibonacci, this can save 

a lot of time! 



Who Cares???
• In The Real World™, most algorithms aren’t as simple to 

optimize (or as bad when not optimized) as fibonacci.

• But some some applications, even small improvements 
can be helpful when 𝑛 gets really large.
• For Facebook, 𝑛 (number of users) is ≈ 1 billion!

• Want to generate a list of suggested friends? You’d better have a 
fast algorithm as a function of 𝑛.



Summary
• There are many ways we can analyze algorithms, such as for 

correctness. 

• Analyzing the time complexity of an algorithm is useful for 
determining how long it will take when the input gets large. 
• Time complexity can be analyzed within your code using millis()

to see how long a function takes to run.

• It can also be analyzed by reasoning through the code and 
understanding how long each piece takes, then finding a cost 
function cost(𝑛) where 𝑛 is the size of the input. 

• Time complexity is expressed in “Big-Oh” notation, where we 
drop all the pieces of the cost function except the one that 
grows the fastest. We call the fastest-growing term the order 
of growth. 


