Timing & Algorithmic
Complexity
o

The Programmers’ Credo: we do these things not
because they are easy, but because we thought they
were going to be easy

Sam Wolfson
CSE 120, Winter 2020

Administrivia

* Portfolio Update 2 due tonight!
* Tic-Tac-Toe due Friday

 The focus of section this week

* Check off or submit on Canvas
* Quiz 4 on Friday

* Living Computers Museum Report due Monday
* Go this weekend if you haven't yet!

 TAs will post on Piazza about when they will be there.
* Also in section this week: brainstorming final project ideas!

» Section next week: Innovation Exploration Presentations

Innovation Exploration

* Explore a topic in the broad field of computing and its
implications on society.

* You will give a 3-5-minute presentation aimed at teaching
others about a computing-related innovation that is
interesting to you, including:

* Purpose
« Effects & Impacts

* Technical Aspects

* You will have a large degree of freedom concerning the
topic of your presentation and you will be presenting to
the rest of the class on March 3 or March 5 during section.

Collaboration Expectations

* In this course, we did not give a strong definition of the
line between collaboration and cheating.

« Compared to other CSE courses, we have been very
relaxed about what constitutes cheating.
* Here, we really want to encourage collaboration.
 Particularly in courses that count for admission (CSE 14x) you will
need to be more cognizant.

* As a general rule: you should discuss high-level concepts
and ideas with your classmates, but you shouldn’t be
sharing specific lines of code.

Outline

 What is algorithm analysis?
 How can we compare how long algorithms take?
 How can we “formalize” how long an algorithm takes?

 How can we optimize our algorithms?

Reprise: Algorithm Correctness

* Correctness is probably the most important aspect by
which we can analyze algorithms.

* An algorithm is considered correct if, for every input, it:
* returns the correct output,
e doesn’t run forever, and

e doesn’t cause an error.

* Incorrect algorithms could run forever, or crash, or not
return the correct answer.

Algorithm Analysis: Timing

 One way to analyze algorithms: computation time
 How long does it take to run and finish its job?

 We can use this to compare efficiency of two different
algorithms that solve the same task.

* Example: multiple ways to sort a list

* But how can we measure time?
e Counting in your head
* With a stopwatch
* Within the program itself

Timing In Processing

* The function millis() returns the number of milliseconds
since starting your program (as an 1nt).

e To start timing, call and store the value in a variable:
int startTime = millis();

« Call again after your function is complete, and subtract:
void draw() {
int startTime = millis();
computeSomething();
int totalTime = millis() - startTime;
println(“Took “ + totalTime + “ ms”);
noLoop();

Outline

 What is algorithm analysis?
 How can we compare how long algorithms take?
 How can we “formalize” how long an algorithm takes?

 How can we optimize our algorithms?

Algorithm Example: Fibonacci

* Function: Fibonacci _(;Lb (“.\)y 7() 'F(‘—-D

« fibonacci(1) =1 /\

* fibonacci(2) =1

A $+@)+F(D)
» fibonacci(3) = fibonacci(1) + fibonacci(2) =1+1 =2 |
 fibonacci(n) = fibonacci(n — 2) + fibonacci(n — 1) |

* Code: Fibonacci -F(@"“FU]

int fibonacci(int n) {])

ifF (n==111n==2){ v

return 1;
}
return fibonacci(n-1) + fibonacci(n-2);

}

e Let’'s seeitin action...

Comparison: Fibonacci

 One of our Fibonacci functions seemed a lot faster than
the other one — why?

* Let's look at a more concrete way to figure it out.

« We can analyze time without ever getting out millis(),
just by reasoning our way through an algorithm!

Outline

 What is algorithm analysis?
 How can we compare how long algorithms take?
 How can we “formalize” how long an algorithm takes?

 How can we optimize our algorithms?

How To Analyze Algorithmic Time

* Silly Example Function: SumPlus1
* Input: an array of 1nts
« Output: the sum of all 1nts in the array, plus 1

e Code: SumPlusl

int sumPlus1(int[] array) {

int sum = 0;

int 1 = 0;

while (i < array.length) {
sum = sum + arrayl[il];
1 =1+ 1;

}

sum = sum + 1;

return sum;

How To Analyze Algorithmic Time

e Cost: the amount of time it takes to do something,.

* The cost of a “simple” line of code (i.e., no function calls or loops)
is 1 “time.”

int z = x +vy; // cost: 1

* The cost of a loop is the cost of all the lines of code inside of it,
multiplied by the number of times it loops.
int i = 0; // Cost:] In+2
while (i < n) { // cost: 2 xn ¢S
int x = 3; // cost: 1
i=1+1; // cost: 1
}

* The cost of a function is the sum of the cost of all the lines of code
within the function.

Analysis of SumPlusl

int sumPlus1(int[] array) { -
Cost: 1

int sum = 0;

int 1 = 0; I!Hﬁl'l
while (i < array.length) {
sum = sum + arrayl[il; ——
ost
1 =1+ 1;
}
sum = sum + 1;

return sum;

Loop Cost:
2 *

array.length

Let the length of array be equal to n. Then the total cost is:

costtn) =14+14+2*n)+14+1=2n+4

Analysis of SumPlusl

 When analyzing functions, we only care about the term
that grows the fastest.

e For cost(n) = 2n ;5(which term is this?

* 4is constant — it never grows no matter how large n becomes.

e 2n, however, grows linearly with n — so it is the fastest-growing
term in this cost.

* cost(n) z}[n
* Furthermore, we don’t really care about the 2, since it's constant.
e O(n)=n

 We call this “Big-Oh" notation — we're only concerned with the
fastest-growing term, and with the parts of it that actually grow.

Time Complexity

 The amount of time it take to run an algorithm.

* The fastest-growing term in the cost function (“order of growth”).

* Written in terms of the size n of the input (e.g., number of elements
in an array, nt" Fibonacci number) with “Big-Oh” notation.

1,000

— 0O(1)
800 O((';’(gg))
- O(n2)
_ 600 o
£
" 400
200
A—

0

0 200 400 600 800 1,000
n

Time Analysis: Fibonacci

int fibonacci(int n) {

if (n ==11[] n==2) {
Cost:
}

return fibonacci(n-1) + fibonacci(n-2);

1 \ ;

|

Cost; 7777

Everything inside f1bonacc1 besides the recursive call is
just 0(1). This is also called “constant time” since it doesn't
grow as n grows.

Time Analysis: Fibonacci

fibonacci(6)

/\

f(5) f(4)

T T

f(4) f(3) f(3) f(2)

A NVAN /NN

3 Q) f(2) £(1) f2 fQ@)) ! \

AT T

f(2) f(l)\\

1 1 How many times do we call fibonacci forn = 6?

Relax!

* Let's relax this problem a bit. All I've done is filled
Y !\/ in the missing nodes
© to make the tree “full”

(0 ()
() () () ()

e How manyécircles are there on this tree?
¥

e cost(n) =777 =31

Relax!

* Let's relax this problem a bit. All I've done i filled
in the missing nodes
fibonacci(6) to make the tree “full”
(O (0
() () (D (2

« How manygcircles are there on this tree?
e cost(m) =2°>—1=31

Relax!

* Let's relax this problem a bit. All I've done i filled
in the missing nodes
fibonacci(6) to make the tree “full”
(O (0
() () (D (2

« How many circles are there on this tree?
e costtn) =2""1—-1=31

e So what’s the time cost?
e cost(n) = 2T~ O(2")

Big oof...

 Remember that the time taken by SumPlusl was 0(n).
1,000 1

O(n)
——O(2"
800 2’)
600
()
£
400
200
0 ; >
0 2 4 6 8 10

n

« Can we do better? (Yes))

Outline

 What is algorithm analysis?
 How can we compare how long algorithms take?
 How can we “formalize” how long an algorithm takes?

 How can we optimize our algorithms?

Improving Fibonacci

* Which calculations here are redundant? Most of them!
fibonacci(6)

By remembering the calculations we already performed, we can
save a lot of time. f(6) now only needs 6 function calls (not 15).

* This looks a lot more like O(n).

int fibonacci(int n) {
if (isStored(n)) {
return getStored(n);

}
if (n==1 1] n==2) {

Assume that 1sStored,
getStored, and store all
have constant cost (0(1)).

Now, we only
compute each num

return 1;
_ 2

} < u |3
int fibN = fibonacci(n-1) + fibonacci(n-2);C|\Y
store(n, fibN); S
return fibN; \ 'Pag

Memoization

* The programming technique of
remembering previous calculations so
we don’t need to redo them every time.

 As we saw with fibonacci, this can save
a lot of timel

Who Cares???

* In The Real World™, most algorithms aren’t as simple to
optimize (or as bad when not optimized) as fibonacci.

 But some some applications, even small improvements
can be helpful when n gets really large.
* For Facebook, n (number of users) is = 1 billion!

* Want to generate a list of suggested friends? You’'d better have a
fast algorithm as a function of n.

Summary

 There are many ways we can analyze algorithms, such as for
correctness.

* Analyzing the time complexity of an algorithm is useful for
determining how long it will take when the input gets large.

« Time complexity can be analyzed within your code usingmillis()
to see how long a function takes to run.

It can also be analyzed by reasoning through the code and
understanding how long each piece takes, then finding a cost
function cost(n) where n is the size of the input.

* Time complexity is expressed in “Big-Oh” notation, where we
drop all the pieces of the cost function except the one that
grows the fastest. We call the fastest-growing term the order
of growth. Zn . +/

