Computers:
A Look Behind The Curtain

Sam Wolfson
CSE 120, Winter 2020



Administrivia

e Assignments

* Controlling Elli due tonight
* Portfolio Update 2 due next Wednesday (Feb 26)

* Tic-Tac-Toe (last programming assignment until your
final project!) due next Thursday (Feb 27)

* Looking ahead...
 Final project design document due next Friday (Feb 28)

* Living Computers Museum report due Mar 2

* Guest lecture next Monday: HCI



Quiz Recap

3. (6 points) Loops & Arrays

I've written a (partially-complete) function prod that calculates and returns the product of all
the elements in the array arr. Complete this function by filling in the blanks.

prod (int [] arr) {

int index = ;

int product = ;

while ( index < ) {

product = ;

index = ;

return s




A Light Switch

The switch interrupts the circuit when it is off

_

S
o
=
<
o
=
=
=
=
=
=
(=]

]
§_
sl:



A Light Switch

...and completes the circuit when it is on

—

S
o
=
<
o
=
=
=
=
=
=
(=]

]
§_
sl:

oA
Vil



A Transistor

...Is just like a switch (but controlled by electricity)!

@

ULTRALIFE"



A Transistor

...Is just like a switch (but controlled by electricity)!

i
1)

|
+
L

& horL i svseun
OTAMNMTIEE.

ULTRALIFE"

Connecting the
small circuit turns
on the large circuit!



Transistors

* l[dea: use a small amount of electricity to control a
(possibly larger) amount of electricity

 Example: amplifiers

* [In computers: use circuits to control other circuits!

-
BN



Building Logic With Transistors

* In Processing: can compare boolean values

A && B A ||l B TA

* |[n hardware:
« false means the circuit is off

« true means the circuit is on

 How to implement comparison with transistors?



false: circuit off

AND gate true: circuiton

Goal: OUT = A && B voltage

+Vcce

. A9 T1
+ Transistor
aaaaaaaaaaaaaaaa Switches
QOTAMMTILE
—_— — T2 =
_ ) \‘t\/
QUT
o OL
B S
0
0 R2
:
.

ground



false: circuit off

AND gate true: circuiton

Goal: OUT = A && B voltage

+Vcce

- T1
+ Transistor
aaaaaaaaaaaaaaaa Switches
QOTAMMTILE
—_— — T2 =
_ ) \‘t\/
QUT
o OL
B S
0
0 R2
:
.

ground



false: circuit off

AND gate true: circuiton

Goal: OUT = A && B voltage

+Vee OUT is only true

when both A and B

are true!
A0 T1
< Transistor
: Switches
OTLMNTE .
=9 T2
- OuUT §;,3
R2

ground



false: circuit off

OR gate true: circuiton

. — voltage
Goal- OUT A || B +Vccg OUT is true when
either A and B are
T1 truel
R
A
Transistor
Switches
F
B
OuUT
T2 1 =
B A|OUT
0 O 0
0 1| 1 R2
1 0 1
1 1 1

ground



Goal: OUT

false: circuit off

NOT gate true: circuiton

= 1A voltage
+\cce OUT is true when
Ais false!

A |OUT R2

0 1

1 0 oOuT

R
A O—/\/\/\/ Transistor
Switch

T1

ground



Q=A1|B

A
B

OR

NOR

Gates Galore!

Q

Q

Q=!(A [l B)

D jl

Q =AG&5 B

A
8| NAND ]

Q = !(A &5 B) = |




(Gates can be combined...

* To build more complex circuits
« Addition, subtraction, multiplication, comparison, etc.

 The CPU in your computer contains billions of
transistors arranged into these circuits

* Performs these operations billions
of times per second

* How do we tell the CPU what to do?
* Could switch wires on and off, but...




Computer Instructions

 We can feed certain instructions into a computer and
retrieve the results.

« But what does an instruction look like?
How do we know which one to use?

 Like all other data on a computer, instructions are just
oinary! (literally translated to electricity on wires)

 Example: the number 0x83 tells computers with Intel
processors to add two numbers together.

* An executable file (program) contains the binary
encoding of all its instructions and data.

 Example: . exe files on Windows



Instructions Are Limited

 The number and types of instructions that a CPU can
perform is always limited.

* Can't change the circuits after the CPU is built!

 Example: with Lightbot, you could only perform a
certain number of actions:

Ee0RBEWD

* The instructions that a specific type of computer can
understand are defined by the Instruction Set

Architecture (ISA).

 The CPU and other hardware are designed to understand
only these predefined instructions.




Types of Instructions

* What kinds of operations do you think would be
useful for a computer to support?

* Talk with your neighbor!
e Shut down the computer
* Arithmetic
* User input
* Taking pictures

* Internet access



Types of Instructions

* Arithmetic operations
Cc = a + b; Z = X % Vy; 1 = h && 3;
e Control flow: what should we do next?

 Normally, instructions are executed sequentially.
However, we can use control flow instructions to:

* Jump to function calls int i = 0;

while (i < 3) {

 Possibly jump on conditional branches = i+ 1:

* Possibly jump in loops }
* Transfer data between CPU and memory
* Load data from memory into CPU
» Store data from CPU into memory



Aside: Memory

* We need somewhere to store information
* Instructions for the computer to execute

e Data (e.g., variables, files, etc.)

* Treat memory like a single, massive array
* Each entry is the same size (1 byte)

* Each entry has an index (address) and a value (data)

 |If instructions need to reference data stored in
memory, they can look it up using the address

 Just like indexing into an array



Generating Instructions

* We need to specify complex tasks using only
simple actions provided by instructions

 Luckily, this is done for us — by other programs!

S temp = v[k];
High-Level L:?mguage vIk] = v[k+l]:
(Processing) vik+1] = temp;

Compiler
P mov (%rsp), %edx

Assembly Language mov (%rsp,4), %ecx

(x86, MIPS, ARM) mov %edx, (%rsp,4)
mov %ecx, (%rsp)
Assembler
0000 1001 1100 0110 1010 1111 0101
: 1000 1010 1111 0101 1000 0000 1001
(Executable File) 1100 01160 1100 0110 1010 1111 0101

Machine Language




Bootstrapping

* But wait — if we use another program to compiler
our program, how was that program compiled?

 Who compiles the compiler?

* The first compilers were written directly in binary.

* Bootstrapping: we can use simple languages to
create increasingly complex ones.

Processing

1
C
t

Abstraction Assembly



Instruction Execution

* The agent (in this case, the CPU) follows
instructions flawlessly and mindlessly.

 |dentical inputs = identical results
* The program counter (PC) contains the memory
address of the current instruction.

 So the CPU knows what to execute

 Updated after each instruction is executed, sometimes
jumping around based on the program's control flow.



Fetch-Execute Cycle

* The most basic operation of a computer is to
continually perform the following cycle:

* Fetch the next instruction (read from memory).
* Execute the instruction based on its purpose and data.

* Execute portion broken down into:

* Instruction decode Update Fetch
PC Instruction
 Data fetch / \
* Instruction computation Store Decode
Data Instruction
« Store result \ /

Compute —— Fetch
Instruction Relevant Data



Fetch-Execute Cycle (Worksheet)

Ox00

CPU
Memory PC Output
12
6

Ox01
0x02
Ox03

add 0x00, 0x01
store 0x01

Current Instruction



0x00
0x01
0x02
Ox03

Fetch-Execute Cycle

Memory

12

6

add 0x00, 0x01
store 0x01

CPU

PC Output

Ox02 27

Current Instruction

??



Fetch-Execute Cycle

CPU
Memory PC Output
0x02 27
Ox00 12
0Ox01 6
# 0x02 add 0x00, 0x01 Current Instruction

0Ox03 store 0x01

??

The Program Counter points to the address 0x02 in memory.



Fetch-Execute Cycle

CPU
Memory PC Output
0x02 27
Ox00 12
Ox01 6 Xty
# 0x02 add 0x00, 0x01 Current Instruction

0Ox03 store 0x01
add 0x00, 0x01

Fetch the instruction.



Ox00

Fetch-Execute Cycle

CPU
Memory PC Output
0x02 22
12
6 X+y
add 0x00, 0x01 nt Instruction
store 0x01

add 0x00, 0x01

Decode the instruction.



Fetch-Execute Cycle

CPU

Memory PC Output

Ox00

6 12+ 6

add 0x00, 0x01 Current Instruction

store 0x01
add 0x00, 0x01

Fetch the relevant data from memory.



Fetch-Execute Cycle

CPU
Memory PC Output
0x02 27
Ox00 12
Ox01 6 12+6 =18
# 0x02 add 0x00, 0x01 Current Instruction

0Ox03 store 0x01
add 0x00, 0x01

Compute the result...



Ox00

Fetch-Execute Cycle

CPU
Memory PC Output
0x02 18

12

/
6 12+ 6 =18
add 0x00, 0x01 Current Instruction
store 0x01

add 0x00, 0x01

...and place it in temporary storage.



Fetch-Execute Cycle

CPU
Memory PC Output
0x03 18
Ox00 12
0Ox01 6
# 0x02 add 0x00, 0x01 Current Instruction

0Ox03 store 0x01
add 0x00, 0x01

Now, advance the Program Counter to point to the next instruction.



Fetch-Execute Cycle

CPU
Memory PC Output
0x00 12
0x01 6

0x02 add 0x00, 0x01
# 0x03 store 0x01

Current Instruction

add 0x00, 0x01

Now, advance the Program Counter to point to the next instruction.



Fetch-Execute Cycle

CPU
Memory PC Output
0x03 18
Ox00 12
0Ox01 6
0x02 add 0x00, 0x01 Current Instruction
# 0x03 store 0x01
store 0x01

Fetch the instruction into the CPU.



Fetch-Execute Cycle

CPU
Memory PC Output
0x00 12
0x01 6

0x02 add 0x00, 0x01
# 0x03 store 0x01

Current Instruction

store 0x00

Decode the instruction: “store the output value into memory at 9x00.”



Fetch-Execute Cycle

CPU

Memory PC Output
oxaz 1| 13
Ox00 12 —
0Ox01 6
0x02 add 0x00, 0x01 Current Instruction

# 0x03 store 0x01
store 0x01

Execute the instruction.



Ox00
0Ox01

Fetch-Execute Cycle

CPU
Memory PC Output
oxaz 1| 13
18 -
6
add 0x00, 0x01 Current Instruction
store 0x01

store 0x01

Execute the instruction.



Fetch-Execute Cycle

CPU
Memory PC Output
0x04 18
Ox00 18
0Ox01 6
0x02 add 0x00, 0x01 Current Instruction
# 0x03 store 0x01
store 0x01

And so on, and so forth...



Clock Rate

* The speed at which your computer can perform
the Fetch-Execute cycle.
* Must ensure that the clock rate is slow enough to

accommodate the slowest instruction.
1 instruction

* Clock rate is usually given in Hertz. 1hertz =
« Example: 2 Ghz = 2 * 10° Hz = 2 billion

second
instructions

second

 However, clock rate is often not a good indicator
of speed

* Modern CPUs spend a lot of their time idle, waiting for
data from memory, disk drives, networks, etc.



Example: Running Processing

* The Processing environment compiles your code
into machine language (0Os and 1s, which
pecomes electricity on wires in the CPU)

« Memory is automatically set aside for the
orogram's instructions, variables, and data.

» Starting from the beginning of your program (in
the case of Processing, the setup( ) function) the
computer will continuously perform the Fetch-
Execute cycle.

* [t will continue executing until the end of the program
Is reached, or it encounters an error.



