
Complexity
Why is my program taking forever?

Sam Wolfson

CSE 120, Winter 2019

Computer Science In The News

Studies Keep Showing That the Best Way to Stop Piracy Is to Offer
Cheaper, Better Alternatives

Study after study indicates that overly-aggressive anti-piracy efforts don’t work,
and the real solution lies in giving would-be pirates better, cheaper options.

motherboard.vice.com

Sam Wolfson (CSE 120, Winter 2019) Complexity 1 / 28

https://motherboard.vice.com/en_us/article/3kg7pv/studies-keep-showing-that-the-best-way-to-stop-piracy-is-to-offer-cheaper-better-alternatives?utm_source=reddit.com

Administrivia

Portfolio Update 2 due tonight!

Project Planning due Saturday (March 3rd)

Tic-Tac-Toe due Saturday (March 3rd)

Sam Wolfson (CSE 120, Winter 2019) Complexity 2 / 28

Innovation Exploration

Mini-research project to let you explore a computing topic that is
interesting to you

Pick a recent and relevant topic
Think of this as your “project” for the reading and writing portion of
this course

Part 1: Innovation Post (March 5th)

4+ paragraphs, 550-750 words — posted to Canvas discussion board
Well-researched, insightful post, including 3+ citations
Purpose, Effects and Impacts, Technical Aspects

Part 2: Respond to Posts (March 8th)

Comment on 3+ other students’ posts

Sam Wolfson (CSE 120, Winter 2019) Complexity 3 / 28

Outline

What is algorithm analysis?

How can we compare how long algorithms take?

How can we “formalize” how long an algorithm takes?

How can we optimize our algorithms?

Sam Wolfson (CSE 120, Winter 2019) Complexity 4 / 28

Algorithm Correctness

An algorithm is considered correct if, for every input, it:

reports the correct output,
doesn’t run forever,
doesn’t cause an error.

Incorrect algorithms could run forever, or crash, or not return the
correct answer.

But they can still be useful, e.g., for approximation.

Sam Wolfson (CSE 120, Winter 2019) Complexity 5 / 28

Algorithm Analysis: Timing

One way to analyze algorithms: computation time
How long does it take to run and finish its task?
We can use this to compare efficiency of two different algorithms that
solve the same task.

How to measure time?

Counting in my head
Stopwatch
Within the program itself

Sam Wolfson (CSE 120, Winter 2019) Complexity 6 / 28

Timing in Processing

Definition: millis()

The function millis() returns the number of milliseconds since starting
your program (as an int).

To start timing, call and store the value in a variable:

int startTime = millis();

Call again after your function is complete and subtract:

void draw() {

int startTime = millis();

computeSomething();

int endTime = millis() - startTime;

println("Took " + endTime + " ms to compute");

noLoop();

}

Sam Wolfson (CSE 120, Winter 2019) Complexity 7 / 28

Outline

What is algorithm analysis?

How can we compare how long algorithms take?

How can we “formalize” how long an algorithm takes?

How can we optimize our algorithms?

Sam Wolfson (CSE 120, Winter 2019) Complexity 8 / 28

Algorithm Example: Fibonacci

Function: Fibonacci

fibonacci(1) = 1

fibonacci(2) = 1

fibonacci(3) = fibonacci(1) + fibonacci(2) = 1 + 1 = 2

fibonacci(n) = fibonacci(n − 1) + fibonacci(n − 2)

Code: Fibonacci

int fibonacci(int n) {

if (n == 1 || n == 2) {

return 1;

} else {

return fibonacci(n-1) + fibonacci(n-2);

}

}

Let’s see it in action. . .
Sam Wolfson (CSE 120, Winter 2019) Complexity 9 / 28

Comparison: Fibonacci

One of our Fibonacci functions seemed a lot faster than the other
one. Why?

Let’s look at a more concrete way to figure it out.

We can analyze time without ever getting out millis(), just by
reasoning our way through an algorithm.

Sam Wolfson (CSE 120, Winter 2019) Complexity 10 / 28

Outline

What is algorithm analysis?

How can we compare how long algorithms take?

How can we “formalize” how long an algorithm takes?

How can we optimize our algorithms?

Sam Wolfson (CSE 120, Winter 2019) Complexity 11 / 28

How to analyze algorithmic time

Let’s start with a silly example.

Function: SumPlus1

Input: an array of ints

Output: the sum of all ints in the array, plus 1

Code: SumPlus1

int sumPlus1(int[] array) {

int sum = 0;

for (int i = 0; i < array.length; i = i + 1) {

sum = sum + array[i];

}

sum = sum + 1;

return sum;

}

Sam Wolfson (CSE 120, Winter 2019) Complexity 12 / 28

How to analyze algorithmic time

Definition: Cost

The amount of time it takes to do something.

1 The cost of a “simple” line of code (i.e., no function calls or loops) is
1 “time.”

int z = x + y; // cost: 1

2 The cost of a loop is equal to the cost of all lines of code inside of it,
multiplied by the number of times it loops.

for (int i = 0; i < n; i = i + 1) { // cost: 1 * n

int x = 3; // cost: 1

}

3 The cost of a function is equal to the sum of the cost of all the lines
of code within the function.

Sam Wolfson (CSE 120, Winter 2019) Complexity 13 / 28

Analysis of our silly example

int sumPlus1(int[] array) {

int sum = 0;

for (int i = 0; i < array.length; i = i + 1) {

sum = sum + array[i];

}

sum = sum + 1;

return sum;

}

Sam Wolfson (CSE 120, Winter 2019) Complexity 14 / 28

Analysis of our silly example

int sumPlus1(int[] array) {

int sum = 0; // cost: 1

for (int i = 0; i < array.length; i = i + 1) {

sum = sum + array[i]; // cost: 1

} // cost of loop: array.length * 1

sum = sum + 1; // cost: 1

return sum; // cost: 1

}

Overall Cost

Let the length of array be equal to n. Then our overall cost is:

cost(n) = 1 + (n ∗ 1) + 1 + 1 = n + 3

In computer science, we only really care about the part of this function
that costs the most. In this case, the n term.
We call this “big-oh of n:” O(n).

Sam Wolfson (CSE 120, Winter 2019) Complexity 15 / 28

Time Complexity

Definition: Time Complexity

The amount of time it takes to run an algorithm.

The fastest-growing term in the cost function (the order of growth).

Written in terms of the size n of the input (e.g., number of elements
in an array, the nth Fibonacci number) with “big-oh” notation.

0 200 400 600 800 1,000
0

200

400

600

800

1,000

n

ti
m

e

O(1)

O(log(n))

O(n)

O(n2)

O(2n)

Sam Wolfson (CSE 120, Winter 2019) Complexity 16 / 28

Time Analysis: Fibonacci

int fibonacci(int n) {

if (n == 1 || n == 2) {

return 1;

} else {

return fibonacci(n-1) + fibonacci(n-2);

}

}

Sam Wolfson (CSE 120, Winter 2019) Complexity 17 / 28

Time Analysis: Fibonacci

int fibonacci(int n) {

if (n == 1 || n == 2) {

return 1; // cost: 1

} else {

return fibonacci(n-1) + fibonacci(n-2);

}

}

Sam Wolfson (CSE 120, Winter 2019) Complexity 18 / 28

Time Analysis: Fibonacci

int fibonacci(int n) {

if (n == 1 || n == 2) {

return 1; // cost: 1

} else {

// cost: ????

return fibonacci(n-1) + fibonacci(n-2);

}

}

Everything inside fibonacci besides the recursive call is just O(1).
This is sometimes referred to as “constant time” since it doesn’t grow as n
grows.

Sam Wolfson (CSE 120, Winter 2019) Complexity 19 / 28

Time Analysis: Fibonacci

fibonacci(6)

f (5)

f (4)

f (3)

f (2)

1

f (1)

1

f (2)

1

f (3)

f (2)

1

f (1)

1

f (4)

f (3)

f (2)

1

f (1)

1

f (2)

1

How many times do we end up calling fibonacci for n = 6?

Sam Wolfson (CSE 120, Winter 2019) Complexity 20 / 28

Relax!

Let’s relax this problem a little bit.

fibonacci(6)

How many circles are there on this tree?

cost(n) =??? = 31 cost(n) = 25 − 1 = 31 cost(n) = 2n−1 − 1 = 31

So what’s the time cost? cost(n) = 2n−1 − 1 ≈ O(2n)

Sam Wolfson (CSE 120, Winter 2019) Complexity 21 / 28

Big oof. . .

Remember the time taken by our function sumPlus1 was O(n).

0 2 4 6 8 10
0

200

400

600

800

1,000

n

ti
m

e

O(n)

O(2n)

Can we do better? Yes!

Sam Wolfson (CSE 120, Winter 2019) Complexity 22 / 28

Outline

What is algorithm analysis?

How can we compare how long algorithms take?

How can we “formalize” how long an algorithm takes?

How can we optimize our algorithms?

Sam Wolfson (CSE 120, Winter 2019) Complexity 23 / 28

Improving Fibonacci

What calculations here are redundant?

fibonacci(6)

f (5)

f (4)

f (3)

f (2)

1

f (1)

1

f (2)

1

f (3)

f (2)

1

f (1)

1

f (4)

f (3)

f (2)

1

f (1)

1

f (2)

1

fibonacci(6)

f (5)

f (4)

f (3)

f (2)

1

f (1)

1

f (2)

1

f (3)

f (2)

1

f (1)

1

f (4)

f (3)

f (2)

1

f (1)

1

f (2)

1

By remembering the calculations we already performed, we can save a lot
of time! F (6) now only needs to make 6 total function calls (instead of
15). This now looks a lot more like O(n).

Sam Wolfson (CSE 120, Winter 2019) Complexity 24 / 28

Speedy Fibonacci

int fibonacci(int n) {

if (isStored(n)) {

return getStored(n);

} else if (n == 1 || n == 2) {

return 1;

} else {

int fibN = fibonacci(n-1) + fibonacci(n-2);

store(n, fibN);

return fibN;

}

}

Assume that isStored, getStored, and store all have constant cost
(O(1)). Now, we only compute each number once.

Sam Wolfson (CSE 120, Winter 2019) Complexity 25 / 28

Memoization

Definition: Memoization

The programming technique of remembering
previous calculations so we don’t need to recalculate
them every time.

As we saw with fibonacci, this can save a lot
of time!

Sam Wolfson (CSE 120, Winter 2019) Complexity 26 / 28

Who cares???

In The Real WorldTM, most algorithms aren’t as simple to optimize
(or as bad when not optimized) as fibonacci.

But for many applications, even small improvements can be helpful
when n gets really large.

e.g., for Facebook, n (users) is ≈ 1 billion.

Want to generate list of suggested friends? You’d better have a fast
algorithm as a function of n.

Sam Wolfson (CSE 120, Winter 2019) Complexity 27 / 28

Summary

There are many different ways we can analyze algorithms, such as for
correctness.

Analyzing the time complexity of an algorithm is useful for
determining how long it will take when the input gets large.

Time complexity can be analyzed within your code using millis() to
see how long a function takes to run.
It can also be analyzed by reasoning through the code and
understanding how long each piece takes, then finding a cost function
cost(n) where n is the size of the input.

Time complexity is expressed in “big-oh” notation, where we drop all
of the pieces of the cost function except the one that grows the
fastest. We call the fastest-growing term the order of growth.

Sam Wolfson (CSE 120, Winter 2019) Complexity 28 / 28

	Introduction

