Feds Can't Force You To Unlock Your iPhone With Finger Or Face, Judge Rules

“Judge Westmore declared that the government did not have the right, even with a warrant, to force suspects to incriminate themselves by unlocking their devices with their biological features. Previously, courts had decided biometric features, unlike passcodes, were not ‘testimonial.’ That was because a suspect would have to willingly and verbally give up a passcode, which is not the case with biometrics.

“The magistrate judge decision could, of course, be overturned by a district court judge, as happened in Illinois in 2017 with a similar ruling.”

Administrivia

- Assignments:
 - Taijitu [checkoff] due Thursday (1/17)
 - Reading Check 2 due Thursday by 3:30 pm (1/17)
 - Logo Design due Friday (1/18)
Homework: Logo Design

drawing canvas: 400 x 220

colors: purple, gold, white (bg)
Homework: Logo Design

```plaintext
/* uw_logo.pde
   Created by Justin Hsia

   UW logo made out of rectangles in school colors.
*/

size(400, 220);  // drawing canvas of 400x220
background(255);  // white background

// The letter 'U' in purple
fill(75, 47, 131);  // purple fill
rect(20, 20, 40, 180);  // left side of U
rect(65, 140, 40, 60);  // middle base of U
rect(110, 20, 40, 180);  // right side of U

// The letter 'W' in gold
fill(183, 165, 122);  // gold fill
rect(160, 20, 40, 180);  // left segment of W
rect(205, 140, 40, 60);  // left base of W
rect(250, 100, 40, 90);  // middle segment of W
rect(295, 140, 40, 60);  // right base of W
rect(340, 20, 40, 180);  // right segment of W
```
Drawing a House

- One solution from worksheet:

 \[
 \text{triangle}(7, 1, 3, 5, 11, 5); \\
 \text{rect}(3, 5, 8, 8); \\
 \text{rect}(8, 9, 2, 4);
 \]

- What if we wanted to move the house? 5 changes to our code!
Variables

- Piece of your program that holds the value of something
 - Every variable must be given a name and a data type
 - The values of these variables can change (i.e. vary) during the execution of your program
 - Warning: Not like a variable in Algebra (i.e. an unknown)
 \[5x = 20 \implies x = 4 \]

- Assignment/Write: give a variable a specific value
 - \[x \leftarrow 12; \] "put value 12 into the box x"
Variables

- Piece of your program that holds the value of something
 - Every variable must be given a name and a data type
 - The values of these variables can change (i.e. vary) during the execution of your program
 - Warning: Not like a variable in Algebra (i.e. an unknown)

- Read: use the current value of a variable
 - \(\text{e.g. } \text{ellipse}(x+1, 50, 20, 20); \)
 - Look in box \(x \) and use its current value
 - Draws an ellipse with center at \((13, 50)\)
Datatypes

- **int** integers \((e.g.\ 12\ or\ -3)\)
- **float** decimal/real numbers \((e.g.\ 3.14)\)
- **color** RGB \((e.g.\ \text{color}(0))\)
- **char** characters \((e.g.\ 'J')\)
- **boolean** true or false \((e.g.\ true)\)

Many more exist and can be found in the Processing Reference:
Declarations

- We **declare** a variable by telling Processing the variable’s datatype, followed by the variable’s name:

  ```
  int x;
  float half;
  color yellow;
  ```

- You can also give a variable a starting value (**initialization**) in the same line as the declaration:

  ```
  int x = 4;
  float half = 0.5;
  color yellow = color(255, 255, 0);
  ```
Variable Manipulation

- Executed sequentially, just like other statements

- For variable assignments, compute right-hand side \textit{first}, then store result in variable

Example: \begin{align*}
1) \quad & \text{int } x = 4; \quad \text{\textit{initialize }x \textit{ to 4}} \\
2) \quad & x = x + 1; \quad \text{\textit{increment }x \textit{ by 1}} \\
\end{align*}

1) Read the current value of \(x\) (4) for the right-hand side

2) Add 1 to the current value of \(x\)

3) Store the result (5) back into \(x\)
Drawing a House with Variables

- Initial solution:
  ```
  int houseX = 7;  \text{ changing this to 17 moves the whole house right by 10!}
  
  triangle(houseX, 1, houseX-4, houseX+4, 5, 5);
  rect(houseX, 5, houseX+1, 8, 8);
  rect(houseX, 9, 2, 4);
  ```

- What properties might be useful to store in variables?
Variable Rules & Guidelines

- Variable naming rules:
 - Variables are case-sensitive (e.g. myx vs. myX)
 - Numbers allowed, but not at beginning (e.g. k9 vs. 9k)
 - Generally avoid symbols other than underscore (e.g. my_x)

- Variable names are meaningless to computers, but meaningful to humans
 - Choosing informative names improves readability and reduces confusion

- In this class, most of our variables will be declared and initialized at the very top of our programs
Variable Worksheet

- New functions: `print()`, `println()`
System Variables

- Special variables that hold values related to the state of the program, often related to user input
 - You don’t need to declare these variables
 - These variables will update automatically as the program runs
 - Colored *pink/magenta-ish* in the Processing environment

- **Examples**: *width* and *height* hold the value of the width and height of the drawing canvas, respectively
Active Mode in Processing

- We enter active mode by creating the functions `setup()` and `draw()` in our program
 - `setup()` automatically executes once at the start
 - `draw()` executes infinitely afterwards

- Each time `draw()` executes, it is called a new *frame*
Drawing and Frames

- System variable `frameCount` returns the number of frames since the start of the program
 - Starts at 0 in `setup()`

- `frameRate()` changes the desired number of frame updates per second
 - Larger argument is faster
 - Default is `frameRate(60)`

- `noLoop()` stops `draw()` from being continuously executed
 - Can restart using `loop()`
Motion with Variables

1) Create your drawing
2) Introduce a variable
3) Substitute values in your drawing with expressions that use the new variable
4) Change the variable value in-between frames
 - Use `background()` to cover old frames
TMNT: Donatello

```javascript
size(500,500);
noStroke();
background(255,245,220);

// Donatello
fill(0,100,0);   // dark green
rect(230,182,40,15); // top of head

fill(88,44,141); // purple
rect(230,197,40,6); // bandana mask

fill(0,100,0);   // dark green
rect(230,203,40,20); // bottom of head

fill(219,136,0); // dark yellow
rect(230,223,40,50); // shell

fill(0,100,0);   // dark green
rect(230,273,40,45); // lower body
```
Donatello with a Variable

```java
int x_pos = 100; // x-position

size(500,500);
noStroke();
background(255,245,220);

// Donatello
fill(0,100,0); // dark green
rect(x_pos,182,40,15); // top of head

fill(88,44,141); // purple
rect(x_pos,197,40,6); // bandana mask

fill(0,100,0); // dark green
rect(x_pos,203,40,20); // bottom of head

fill(219,136,0); // dark yellow
rect(x_pos,223,40,50); // shell

fill(0,100,0); // dark green
rect(x_pos,273,40,45); // lower body
```
Stopping Motion

- Stop Donatello from running off the right side of the screen:
 \[x_{\text{pos}} = \min(x_{\text{pos}} + 1, \text{width} - 40); \]
 \(\text{returns minimum of these two numbers} \)
 \(\text{// sets maximum x-pos of width-40=460} \)

- Stop Donatello from running off the left side of the screen:
 \[x_{\text{pos}} = \max(x_{\text{pos}} - 1, 0); \]
 \(\text{returns maximum of these two numbers} \)
 \(\text{// sets minimum x-pos of 0} \)
Falling Into Place

- Introduce variables for each body segment:

```java
int head_pos = 0; // head position
float mask_pos = 15; // mask position
int face_pos = 21; // face position
float body_pos = 41; // body position
int leg_pos = 91; // leg position
```

- Update each variable at different speeds:

```java
head_pos = min(head_pos + 3, 364);
mask_pos = min(mask_pos + 3.5, 379);
face_pos = min(face_pos + 4, 385);
body_pos = min(body_pos + 4.5, 405);
leg_pos = min(leg_pos + 5, 455);
```

Variables that use **decimals** need to be declared as `float`.

Higher segments fall slower and lower segments fall faster.
Falling Into Place

- Update y-positions of drawing based on new variables:

```javascript
// Donatello
fill(0,100,0); // dark green
rect(x_pos,head_pos,40,15); // top of head

fill(88,44,141); // purple
rect(x_pos,mask_pos,40,6); // bandana mask

fill(0,100,0); // dark green
rect(x_pos,face_pos,40,20); // bottom of face

fill(219,136,0); // dark yellow
rect(x_pos,body_pos,40,50); // shell

fill(0,100,0); // dark green
rect(x_pos,leg_pos,40,45); // lower body
```
Summary

- Variables are named quantities that can vary during the execution of a program
 - Datatypes specific different forms of data
 - *e.g.* `int`, `float`, `color`, `Boolean`
 - Variable *declarations* specify a variable datatype and name to the program
 - Generally occur at top of program
- Active mode uses `setup()` and `draw()`
 - Motion can be introduced by changing the values of variables used in drawing commands in-between frames
- `min()` and `max()` functions can be used to limit or stop change in a variable value