
Section 13: Files
Introduction: Files are useful for reading and writing data because they exist outside of your programs. This
allows for lots of different possibilities: (1) you can store the result of your program execution somewhere more
permanent, (2) you can edit the data values between program executions, (3) you can pass data in files
between different programs, or (4) you can change the amount of data your program reads by modifying the
file contents and length.

Importing a File: There are more general ways to import files, but in this course we will using data files in
comma-separated values (CSV) format. The simplest way to import these kinds of files is to call the special
function loadStrings(String filename) and store its return value into a String array. Each line of the
file will be stored in a different index of the array (i.e. the 1st line will be in index 0, the 2nd line in index 1, etc.)
as a String.

● It is easiest if you put your CSV file into your Processing project folder and then you can just use the
filename as the argument.

● Like images, files should be imported once at the beginning of your program (i.e. inside setup() or at
the beginning of a static program).

As the name implies, each row/line of a CSV file contains values with columns separated by commas. So we
will want to split each row into its values using the function split(String s, char delim) . This function
breaks s into pieces (returns a String[]) using delim as the delimiter, a boundary marker between values.

● Note that split() takes a String, not a String[] , so it should be used on a row of imported data,
not the whole imported file.

Example: String[] importedData, header;
void setup() {
 importedData = loadStrings("data.csv");
 header = split(importedData[0], ","); // split header/1st row
}

Converting Data: loadStrings() imports your CSV file as a String array and split() returns the
values in a row in a String[] as well. However, if the file was not intended to be text, you will need to first
convert the data before you use it. Luckily, Processing has a handy set of conversion functions that will do this
for you! These conversion functions are intuitively named: char() , float() , int() , and str() .

Example: String row = "120,3.14,hi";
String[] vals = split(row, ","); // split into array of Strings
int i = int(vals[0]); // stores 120
float f = float(vals[1]); // stores 3.14
String s = vals[2]; // stores "hi" - no conversion needed

Exporting to a File: To save data to a file, we can use saveStrings(String filename, String[]
data) . If there is already an existing file at the path filename, this will overwrite that file so be careful! For
CSV files, filename should end in ".csv" and data should be an array of Strings, each using commas as
delimiters. Each index of data is written into the file as a separate line/row.

Example: int[] row1 = {1, 20, 120, -5};
float[] row2 = {0.33, 1.41, 1.62, 2.71, 3.14};
String[] data = { str(row1[0]), str(row2[0])}; // include 1st columns
for(int i = 1; i < row1. length; i = i+1) { // skip 1st entry
 data[0] = data[0] + ", " + str(row1[i]); // add commas and cols
}

for(int i = 1; i < row2. length; i = i+1) { // skip 1st entry
 data[1] = data[1] + ", " + str(row2[i]); // add commas and cols
}

saveStrings("myData.csv", data);

Exercises:

1) Go to the course website and find this section on the Course Schedule. Download “file_ex.pde ” and
“animals.csv ” to your computer and put both in a folder called file_ex .
a) Open animals.csv in a text editor (e.g. VS Code) to see what a CSV file looks like to Processing.
b) Open file_ex.pde in Processing and run it. It should print the word “film” to the console.
c) Read through the code and its comments and try to figure out what Line 23 (the print() call) is doing.
d) Once you think you know how it works, go to animals.csv and modify only one entry so that running

file_ex.pde will now output “file” to the console instead. Ideally you would use an actual animal
name! (https://en.wikipedia.org/wiki/List_of_animals_by_common_name)

e) Below, write your changed entry: old_animal → new_animal

2) [optional - tricky!] Now modify only Line 23 (the print() call) of file_ex.pde in order to get the
program to print the word “best” to the console. Only two small changes are needed, but you’ll want to
stare at animals.csv a while (without changing it!) to identify the pattern that gets you “best”. Write
your new Line 23 below:

3) Go to the course website and start working on the lab titled “Birthday Visualization.” [partners]

https://en.wikipedia.org/wiki/List_of_animals_by_common_name

