
Section 8: Loops
Introduction: A loop allows us to execute the same block of code multiple times until a specified conditional
expression becomes false (i.e. “do <something> until <condition> fails”). Similar to multiple function
calls, loops tend to be most useful when they are used to execute similar (not identical) sets of instructions.
You may find it helpful to think of a loop as a condensed form of repeated, similar code.

while-loops: This type of loop repeatedly runs the code inside of it while a conditional expression is true:

while(condition) {
 body; // while-loop body
} // jump back to top of while loop

Notice how the code inside of the loop is contained within curly braces, just like
the code in a function! In general, curly braces denote a “block” of code.

Example: int x = 1;
while(x < 10) {
 x = x * 2;
}

The above loop will execute the statement x = x * 2 four times, with the final value of x = 16 :

Iteration x Condition (x < 10) Result
1 1 true Execute x = 1 * 2;
2 2 true Execute x = 2 * 2;
3 4 true Execute x = 4 * 2;
4 8 true Execute x = 8 * 2;
5 16 false Exit loop

for-loops: These are very similar to while-loops, but they allow you to specify additional initialization and
update statements, which are separated by semicolons (;). The following
side-by-side code segments are equivalent:

for(init; condition; update)
{

 body; // for-loop body
}

⇔

init;

while(condition) {
 body;

 update;

}

Examples: int x;
for(x = 1; x < 10; x = x * 2) {}

This (empty body!) for-loop is equivalent to the while-loop example: we’re able
to eliminate the entire body of the loop because it’s now executed as the update statement!

Note that if you declare a variable in the init statement, then that variable is local to the body of the for-loop,
similar to parameters being local to a function body.

int sum = 0;
for(int i = 1; i <= 6; i = i + 1) {
 sum = sum + i;
}

The above loop will sum the numbers from 1 to 6, with the final value of sum = 21 :

Iteration i sum Condition (i <= 6) Result
1 1 0 true Execute sum = 0 + 1;
2 2 1 true Execute sum = 1 + 2;
3 3 3 true Execute sum = 3 + 3;
4 4 6 true Execute sum = 6 + 4;
5 5 10 true Execute sum = 10 + 5;
6 6 15 true Execute sum = 15 + 6;
7 7 21 false Exit loop

Exercises:

1) Describe what the while-loop below does. Then rewrite the code segment using a for-loop.

int pos = 0;
while(pos < min(width, height)) {
 rect(pos, pos, 50, 50);
 pos = pos + 50;
}

2) Complete the while-loop below to find the smallest power of 3 greater than 100. Your answer should be
stored in the variable answer after the loop has executed:

int answer = _____;

while(____________________) {

 answer = ____________________;

}

3) Complete the for-loop below that calculates the sum of all even integers from 50 to 100, inclusive. Your
answer should be stored in the variable sum after the loop has executed:

int sum = _____;

for(int i = _____; i <= _____; i = i + _____) {

 sum = ____________________;

}

4) Find a partner, brainstorm Creativity Project ideas, and get started on “Creativity Planning.” [partners]

