
More Sorting 
Algorithms

With the right algorithm, I can sort the world!
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But this is sloooooow....
• In the worst case, we need to look at, or move around, 

numbers for a list containing only     numbers! 


• There must be a faster way...

n2

n



Enter... Merge Sort!
• Merge sort works on the principle of "divide and conquer"


• Instead of doing all the work yourself, split it up into 
smaller pieces and handle them independently. 


• Let's see it in action!
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This turns out to be a lot 
faster!

• We only need to look at                 numbers in a list 
containing     numbers.


• As our lists grow, this is much less work.

nlog(n)
n

Wow!



Let's get a little weirder...



Pancake Sort!
• Suppose I have a stack of pancakes, and I want to sort 

them by their diameter, with the smallest ones on top.


• However, the only "operations" that I can perform are:


• I can stick my spatula anywhere inside the stack.


• I can flip all the pancakes on top of my spatula.


• How can I sort them? Is it possible?



Of course it's possible...I 
wouldn't be telling you 

about it if it wasn't.
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Pancake Sort Example

And we're done!



More On Pancake Sort
• Though not very useful-seeming at first, it actually turns 

out to have some practical applications.


• Routing tasks between parallel processors.


• Bill Gates published a paper about pancake sorting, 
called "Bounds for Sorting by Prefix Reversal"


• There are some variations on the Pancake Problem:


• The burnt pancake problem, in which pancakes must 
end up burnt-side down.



And finally, there's 
Bogosort...

• Given an unordered list of elements, do the following:


• Randomly shuffle the list


• If the list is now sorted, we're done.


• Otherwise, repeat.


• For a list containing    elements, Bogosort will on average 
take                steps before finishing.


• However, Bogosort is actually unbounded (since it just 
shuffles the list -- it's possible that it may never finish)

N

n
(n+ 1)!

Yes, that's a factorial! (n+ 1)! = (n+ 1) ⇤ n ⇤ (n� 1) ⇤ (n� 2) ⇤ . . . ⇤ 1



$ ./bogosort 2 1 59 3 4 11 50 100 -5 99 40 
------ BOGO-SORTER 3000 ----- 

Was array initially sorted? !!--> No 

OK, let's sort it! 

Attempt: 4736113 
!## Sorting successful at attempt 4736113! 

Sorted array = -5 1 2 3 4 11 40 50 59 99 100 

Overall time taken = 16 seconds 

------ FINISHED ----- 
$ ./bogosort 2 1 59 3 4 11 50 100 -5 99 40 
------ BOGO-SORTER 3000 ----- 

Was array initially sorted? !!--> No 

OK, let's sort it! 

Attempt: 44347702 
!## Sorting successful at attempt 44347702! 

Sorted array = -5 1 2 3 4 11 40 50 59 99 100 

Overall time taken = 256 seconds 

------ FINISHED -----

With Bogosort, you never know how long something will take!

These two lists are  
exactly the same.



There are no practical 
applications of Bogosort 
(at least that I know of...)


