
More Sorting
Algorithms

With the right algorithm, I can sort the world!

Simple Sorts
Insertion Sort

Simple Sorts
Insertion Sort

2 3 6 5 7 4 9

Already sorted Unsorted

Current Item

Simple Sorts
Insertion Sort

2 3 6 5 7 4 9

Already sorted Unsorted

Insert current item into sorted region

Simple Sorts
Insertion Sort

2 3 5 6 7 4 9

Already sorted Unsorted

Insert current item into sorted region

Simple Sorts
Insertion Sort

2 3 5 6 7 4 9

Already sorted Unsorted

And advance the current item

But this is sloooooow....
• In the worst case, we need to look at, or move around,

numbers for a list containing only numbers!

• There must be a faster way...

n2

n

Enter... Merge Sort!
• Merge sort works on the principle of "divide and conquer"

• Instead of doing all the work yourself, split it up into
smaller pieces and handle them independently.

• Let's see it in action!

Merge Sort Example
2 3 6 5 7 4 9 1

Merge Sort Example
2 3 6 5 7 4 9 1

2 3 6 5 7 4 9 1

Merge Sort Example
2 3 6 5 7 4 9 1

2 3 6 5 7 4 9 1

2 3 6 5 7 4 9 1

Merge Sort Example
2 3 6 5 7 4 9 1

2 3 6 5 7 4 9 1

2 3 6 5 7 4 9 1

2 3 6 5 7 4 9 1

Merge Sort Example

2 3 6 5 7 4 9 1

Merge Sort Example

2 3 6 5 7 4 9 1

Merge Sort Example

2 3 6 5 7 4 9 1

2 3

Merge Sort Example

2 3 6 5 7 4 9 1

2 3 5 6

Merge Sort Example

2 3 6 5 7 4 9 1

2 3 5 6 4 7

Merge Sort Example

2 3 6 5 7 4 9 1

2 3 5 6 4 7 1 9

Merge Sort Example

2 3 6 5 7 4 9 1

2 3 5 6 4 7 1 9

2 3 5 6

Merge Sort Example

2 3 6 5 7 4 9 1

2 3 5 6 4 7 1 9

2 3 5 6 1 4 7 9

Merge Sort Example

2 3 6 5 7 4 9 1

2 3 5 6 4 7 1 9

2 3 5 6 1 4 7 9

1 2 3 4 5 6 7 9

This turns out to be a lot
faster!

• We only need to look at numbers in a list
containing numbers.

• As our lists grow, this is much less work.

nlog(n)
n

Wow!

Let's get a little weirder...

Pancake Sort!
• Suppose I have a stack of pancakes, and I want to sort

them by their diameter, with the smallest ones on top.

• However, the only "operations" that I can perform are:

• I can stick my spatula anywhere inside the stack.

• I can flip all the pancakes on top of my spatula.

• How can I sort them? Is it possible?

Of course it's possible...I
wouldn't be telling you

about it if it wasn't.

Pancake Sort Example

Pancake Sort Example

Largest Pancake

Pancake Sort Example

Largest Pancake

Pancake Sort Example

Largest Pancake

Pancake Sort Example

Largest Pancake

Pancake Sort Example

Largest Pancake

Pancake Sort Example

Largest Pancake

Pancake Sort Example

Largest Pancake

Pancake Sort Example

2nd Largest Pancake

Pancake Sort Example

2nd Largest Pancake

Pancake Sort Example

2nd Largest Pancake

Pancake Sort Example

2nd Largest Pancake

Pancake Sort Example

2nd Largest Pancake

Pancake Sort Example

3rd Largest Pancake

Pancake Sort Example

3rd Largest Pancake

Pancake Sort Example

3rd Largest Pancake

Pancake Sort Example

3rd Largest Pancake

Pancake Sort Example

3rd Largest Pancake

Pancake Sort Example

4th Largest Pancake

Pancake Sort Example

4th Largest Pancake

Pancake Sort Example

4th Largest Pancake

Pancake Sort Example

Pancake Sort Example

And we're done!

More On Pancake Sort
• Though not very useful-seeming at first, it actually turns

out to have some practical applications.

• Routing tasks between parallel processors.

• Bill Gates published a paper about pancake sorting,
called "Bounds for Sorting by Prefix Reversal"

• There are some variations on the Pancake Problem:

• The burnt pancake problem, in which pancakes must
end up burnt-side down.

And finally, there's
Bogosort...

• Given an unordered list of elements, do the following:

• Randomly shuffle the list

• If the list is now sorted, we're done.

• Otherwise, repeat.

• For a list containing elements, Bogosort will on average
take steps before finishing.

• However, Bogosort is actually unbounded (since it just
shuffles the list -- it's possible that it may never finish)

N

n
(n+ 1)!

Yes, that's a factorial! (n+ 1)! = (n+ 1) ⇤ n ⇤ (n� 1) ⇤ (n� 2) ⇤ . . . ⇤ 1

$./bogosort 2 1 59 3 4 11 50 100 -5 99 40
------ BOGO-SORTER 3000 -----

Was array initially sorted? !!--> No

OK, let's sort it!

Attempt: 4736113
!## Sorting successful at attempt 4736113!

Sorted array = -5 1 2 3 4 11 40 50 59 99 100

Overall time taken = 16 seconds

------ FINISHED -----
$./bogosort 2 1 59 3 4 11 50 100 -5 99 40
------ BOGO-SORTER 3000 -----

Was array initially sorted? !!--> No

OK, let's sort it!

Attempt: 44347702
!## Sorting successful at attempt 44347702!

Sorted array = -5 1 2 3 4 11 40 50 59 99 100

Overall time taken = 256 seconds

------ FINISHED -----

With Bogosort, you never know how long something will take!

These two lists are
exactly the same.

There are no practical
applications of Bogosort
(at least that I know of...)

