More Sorting Algorithms

With the right algorithm, I can sort the world!

Insertion Sort

Insertion Sort

Insertion Sort

Insert current item into sorted region

Insertion Sort

Insert current item into sorted region

Insertion Sort

But this is slooooow....

• In the worst case, we need to look at, or move around, n^2 numbers for a list containing only n numbers!

There must be a faster way...

Enter... Merge Sort!

- Merge sort works on the principle of "divide and conquer"
 - Instead of doing all the work yourself, split it up into smaller pieces and handle them independently.
- Let's see it in action!

2 3 6 5 7 4 9 1

This turns out to be a lot faster!

• We only need to look at nlog(n) numbers in a list containing n numbers.

As our lists grow, this is much less work.

Let's get a little weirder...

Pancake Sort!

- Suppose I have a stack of pancakes, and I want to sort them by their diameter, with the smallest ones on top.
- However, the only "operations" that I can perform are:
 - I can stick my spatula anywhere inside the stack.
 - I can flip all the pancakes on top of my spatula.
- How can I sort them? Is it possible?

Of course it's possible...I wouldn't be telling you about it if it wasn't.

More On Pancake Sort

- Though not very useful-seeming at first, it actually turns out to have some practical applications.
 - Routing tasks between parallel processors.
- Bill Gates published a paper about pancake sorting, called "Bounds for Sorting by Prefix Reversal"
- There are some variations on the Pancake Problem:
 - The burnt pancake problem, in which pancakes must end up burnt-side down.

And finally, there's Bogosort...

- Given an unordered list of elements, do the following:
 - Randomly shuffle the list
 - If the list is now sorted, we're done.
 - Otherwise, repeat.
 - For a list containing n elements, Bogosort will on average take (n+1)! steps before finishing.
 - Yes, that's a factorial! (n+1)! = (n+1)*n*(n-1)*(n-2)*...*1
 - However, Bogosort is actually unbounded (since it just shuffles the list -- it's possible that it may never finish)

With Bogosort, you never know how long something will take!

```
$ ./bogosort 2 1 59 3 4 11 50 100 -5 99 40
----- BOGO-SORTER 3000 -----
Was array initially sorted? \longrightarrow No
OK, let's sort it!
Attempt: 4736113
## Sorting successful at attempt 4736113!
Sorted array = -5 1 2 3 4 11 40 50 59 99 100
Overall time taken = 16 seconds
----- FINISHED -----
$ ./bogosort 2 1 59 3 4 11 50 100 -5 99 40 	←
----- BOGO-SORTER 3000 -----
Was array initially sorted? \longrightarrow No
OK, let's sort it!
Attempt: 44347702
## Sorting successful at attempt 44347702!
Sorted array = -5 1 2 3 4 11 40 50 59 99 100
Overall time taken = 256 seconds
----- FINISHED -----
```

These two lists are exactly the same.

There are no practical applications of Bogosort (at least that I know of....)