

Computer Science Principles

Proofs \& Computation

CSE = Abstraction

CSE = Abstraction

At the very "lowest" level is hardware which Justin has talked about.

At the very "highest" level is Theory which is what today is about!

In this lecture, we will explore the abstract! And we will apply it to computation!

But we start simple. . .

How many numbers are there?

In this lecture, we will explore the abstract! And we will apply it to computation!

But we start simple. . .

How many numbers are there?
. . . Infinity, of course!

The Biggest Number Ever

What's the biggest number you can name?

The Biggest Number Ever

```
What's the biggest number you can name?
\(0,1,2, \ldots, 4000000000000000, \ldots\)
If you give me a number, I can get a bigger one by adding 1 :
\[
x \mapsto x+1
\]
```

If we collect all of these numbers together, we call the resulting set "the natural numbers".

Imagine an incredibly large (infinite, actually) index of numbers:
0 :
1 :
2 .
3:
4:
5:
6:
7:

We say a set of numbers is countable (or the same size as the natural numbers) whenever we can list them out.

Even Numbers

"Obvious" Theorem
There are as many even numbers as odd numbers.

Even Numbers

"Obvious" Theorem

There are as many even numbers as odd numbers.
Are there more even numbers than natural numbers?
0 :
1 .
2 .
3:
4:
5:
6:
7 :

Integers

Are there more integers than natural numbers?

Are there more fractions than natural numbers?

Strings

Are there more Strings than natural numbers?

Program

1 List out Strings of length 1 :
0 a
1 b
2 c
3.

2 List out Strings of length 2:
4 aa
5 ab
6 ac
7 ...
3 List out Strings of length 3:
7 aaa
8 aab
9 aас
10 ...
4
Real Numbers

Are there more real numbers than natural numbers?

Describable Numbers

Incredibly, this is enough machinery to prove interesting results.

Incredibly, this is enough machinery to prove interesting results.

Definition (Describable)
A number is describable when it can unambiguously be described by some String.

Example

■ "one"

Incredibly, this is enough machinery to prove interesting results.

Definition (Describable)
A number is describable when it can unambiguously be described by some String.

Example

■ "one"

- "two"

Describable Numbers

Incredibly, this is enough machinery to prove interesting results.

Definition (Describable)
A number is describable when it can unambiguously be described by some String.

Example
■ "one"
■ "two"
■ " π "

Describable Numbers

Incredibly, this is enough machinery to prove interesting results.

Definition (Describable)
A number is describable when it can unambiguously be described by some String.

Example
■ "one"
■ "two"
■" π "

- "the smallest number with four million digits"

Describable Numbers

Incredibly, this is enough machinery to prove interesting results.

Definition (Describable)
A number is describable when it can unambiguously be described by some String.

Example
■ "one"
■ "two"
■" π "

- "the smallest number with four million digits"

Definition (Describable)
A number is describable when it can unambiguously be described by some String.

Definition (Interesting)
A number is interesting when it's the smallest number with some interesting property.

Definition (Describable)
A number is describable when it can unambiguously be described by some String.

Definition (Interesting)
A number is interesting when it's the smallest number with some interesting property.

Example

- 0 is interesting because it's "the smallest non-negative number"

Definition (Describable)

A number is describable when it can unambiguously be described by some String.

Definition (Interesting)
A number is interesting when it's the smallest number with some interesting property.

Example

- 0 is interesting because it's "the smallest non-negative number"
- 1 is interesting because it's " $1 \times x=x$ for all x "

Describable Numbers

Definition (Describable)
A number is describable when it can unambiguously be described by some String.

Definition (Interesting)
A number is interesting when it's the smallest number with some interesting property.

Example

- 0 is interesting because it's "the smallest non-negative number"
- 1 is interesting because it's " $1 \times x=x$ for all x "
- 2 is interesting because it's "the smallest prime number"

Definition (Describable)

A number is describable when it can unambiguously be described by some String.

Definition (Interesting)
A number is interesting when it's the smallest number with some interesting property.

Questions

Definition (Describable)

A number is describable when it can unambiguously be described by some String.

Definition (Interesting)
A number is interesting when it's the smallest number with some interesting property.

Questions

- What is the smallest uninteresting number?

Definition (Describable)

A number is describable when it can unambiguously be described by some String.

Definition (Interesting)
A number is interesting when it's the smallest number with some interesting property.

Questions

- What is the smallest uninteresting number?
- Is every interesting number describable?

Definition (Describable)

A number is describable when it can unambiguously be described by some String.

Definition (Interesting)
A number is interesting when it's the smallest number with some interesting property.

Questions

- What is the smallest uninteresting number?
- Is every interesting number describable?
- Is every real number describable?

Definition (Computable)
A number is computable when it can unambiguously printed out by some program.

Example

- 0 is interesting because text ("0", 0,0)
- 1 is interesting because text (" 1 ", 0,0)
- π is interesting because...

Question

- Is every number computable?

Computability

We now know there is something that isn't computable. But can we find something specific?

We now know there is something that isn't computable. But can we find something specific?

Halting Problem
Given a program P as input, can we determine if it ever finishes running?

We now know there is something that isn't computable. But can we find something specific?

Halting Problem
Given a program P as input, can we determine if it ever finishes running?
It turns out the answer is no!

We now know there is something that isn't computable. But can we find something specific?

Halting Problem
Given a program P as input, can we determine if it ever finishes running?
It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has written a program:

We now know there is something that isn't computable. But can we find something specific?

Halting Problem

Given a program P as input, can we determine if it ever finishes running?
It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has written a program:

HALT (P) which returns true when P finishes and false if it doesn't.

We now know there is something that isn't computable. But can we find something specific?

Halting Problem

Given a program P as input, can we determine if it ever finishes running?
It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has written a program:

HALT (P) which returns true when P finishes and false if it doesn't.

Then, we will find a program CONFUSE which will confuse the HALT program. . .

We now know there is something that isn't computable. But can we find something specific?

Halting Problem

Given a program P as input, can we determine if it ever finishes running?
It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has written a program:

HALT (P) which returns true when P finishes and false if it doesn't.

Then, we will find a program CONFUSE which will confuse the HALT program. . . which means it doesn't work.

We now know there is something that isn't computable. But can we find something specific?

Halting Problem

Given a program P as input, can we determine if it ever finishes running?
It turns out the answer is no!

The Idea
Hypothetically, consider what would happen if someone really smart has written a program:

HALT (P) which returns true when P finishes and false if it doesn't.

Then, we will find a program CONFUSE which will confuse the HALT program. . . which means it doesn't work. So, it can't be written!

Halting Problem

Suppose we have a program HALT such that:
HALT (P) returns true when P finishes and false if it doesn't.

Our Program

Work:

Some infinite tapes:

Some infinite tapes: (how many doesn't matter; one tape for input and work, etc.)
Input:

0	1	1	0	1	0	1	1	0	1	
\rightarrow										

Some infinite tapes: (how many doesn't matter; one tape for input and work, etc.)

Input: | $\left.\begin{array}{c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|}\hline 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & \\ \rightarrow\end{array}\right]$ |
| :---: |

A finite-state controller:

Some infinite tapes: (how many doesn't matter; one tape for input and work, etc.)

Input: | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | |
| \ldots | | | | | | | | | | | |

Work:

A finite-state controller:

That's it. These things can decide exactly the same languages as register machines, and lambda calculus.

