w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity

Algorithmic Complexity

CSE 120 Winter 2018

Instructor: Teaching Assistants:

Justin Hsia Anupam Gupta, Cheng Ni,
Sam Wolfson, Sophie Tian,

Facebook should actually be Tinder too

“The 1dea behind Meetups is smart, but the execution is
a mess. Because Meetups ambiguously shows multiple
people at once, sends aggressive notifications to
participate and encompasses all kinds of relationships,
the results are meaningless.

“Facebook’s made it easier than ever to “feel
connected,” endlessly scrolling through friends’ photos,
while actually allowing us to isolate ourselves.”

* https://techcrunch.com/2018/02/14/facebook-
matchmaker/

Eugene Oh,
Teagan Horkan

oM Vs
&%
A new way to meet up.

If everyone is in, we'll connect you on
Messenger.

New suggestions every
week

Every week we'll suggest
new people to meet up with.

Answer Honestly

We'll only share your
response if your friends also
want to meet up - respond
without social pressure.

Coordinate on Messenger
If everyone wants to meet up
we'll connect you on
Messenger so you can pick a
time and place that works.

CSE120, Winter 2018

Meetups

Want to meet up with David,
Jonathan, Kate, Tim and 16
others?

SO @
0@ & 5
Se20&
B0

@ 5 already said yes

No - m

WA UNIVERSITY of WASHINGTON

LCM Report Wrap-Up

ﬁ living computers
museum +labs

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Administrivia

«» Assignments:
" |nnovation Exploration post (2/27)
" Project Update in lab on Thursday (3/1)
" |nnovation Exploration comments (3/2)

+» “Big Ideas” lecture: Proofs and Computation

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Outline

+ Algorithm Analysis: The Basics
+» Comparing Algorithms
+ Orders of Growth

WA/ UNIVERSITY of WASHINGTON L21: Algorithmic Complexity

CSE120, Winter 2018

Algorithm Correctness

+» An algorithm is considered correct if for every input, it

reports the correct output and doesn’t run forever or
cause an error

+ Incorrect algorithms may run forever, crash, or not
return the correct answer

= But they could still be useful!

= e.g. an approximation algorithm e« agovmae wlue of T
dmwx‘uma'*e Sl‘\of‘-i'eﬂl' r)&“«

+» Showing correctness
" Mathematical proofs for algorithms

" Empirical verification of implementations ¢ Today’s ecture

W UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Algorithm Analysis

+» One commonly used criterion for analyzing algorithms
IS computation time
" How long does the algorithm take to run and finish its task?

= Can be used to compare different algorithms for the same
computational problem

+ How to measure this time?
- Counting in my head — Incur\;ir’e:t 'ma((\.krojt) not precise

- StopwatCh <— (r\(msf.s"'m"f/ sl maaurste

= Within your program <— muck r;\ﬁwe_rg&mdt
WN(onlisTen !

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Aside: Computation Time

+» Computers take time to complete their tasks

" Under the hood, it’s sort of like a bunch of buckets of water
filling up — you have to wait for water to reach the top of a
bucket for a single computation to complete Hrnsistocs

" Buckets take about a billionth of a second to fill
(~ 1 nanosecond)

- There are billions of them on a single chip!

+ A CPU can generally only execute one instruction at a
time 0h0\46\5|<f Take many instracons

W UNIVERSITY of WASHINGTON

L21: Algorithmic Complexity

CSE120, Winter 2018

Timing in Processing

» The function mi I 1s() returns the number of
milliseconds since starting your program (as an 1nt)
= To start timing, call and store the value in a variable

= Call again after your computation and subtract the values

void draw() {

int time = millis(); /stores stort fime in wisble
someComputation();

println("Took " + (millis()-time), + " milliseconds to compute.'");
noLoop () ;

'\’L\\s Sxpression Ca\m\a{i'ej‘ 'ﬁMQ +6\L0n L>y Some Compti’fd fbr\()
¥ and s evalucted betore the string §s printed

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Outline

+» Algorithm Analysis: The Basics
+» Comparing Algorithms
+ Orders of Growth

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Algorithm: Searching A Sorted Array

+ |nput: Numbers in a sorted array, desired number
+» Qutput: If desired number is in the array (true/falseﬂ?
cm\p\,&a&nma\
+ Algorithm 1: problem
" Check each index starting from O for desired number z
 If equal, then report true (A\gb{"”\m
- If not equal, then move to next index f
- If at end of array, then report false
= Called Linear Search (also works for unsorted array)
M boolean linearSearch(int num) {
for(int 1 = 0; 1 < intArr.length; 1 = 1 + 1) {
if(intArr[i] == num) {
} return true; hwﬂkwmﬁ+ﬁﬁwﬂ
}
) return false;
2l - 10

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Algorithm: Searching A Sorted Array

+ |nput: Numbers in a sorted array, desired number
+» Qutput: If desired number is in the array (true/false)

« Algorithm 2:

= Check “middle” index for desired number
 If equal, then report true

- If less than desired number, check halfway forwards next
- If greater than desired number, check halfway backwards next

" |f no halfway point left, then report Talse

= Called Binary Search
« http://www.cs.armstrong.edu/liang/animation/web/BinarySearch.html

11

YA UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Question

+» On average, which algorithm should take less time to
complete a search?

= \/ote at http://PollEv.com/justinh

A.
|B. Algorithm 2 (Binary Search) bt how do you " prowe” Hhis !
/ T

C. They’'d take about the same amount of time

12

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Measuring Linear Search

« Let’s time Linear Search:

HVvoid draw() {

int n = 33

println("Is " + n + " in intArr?");

int time = millis();

println(linearSearch(n));

println("Took " + (millis()-time) + " milliseconds to compute.");
noLoop () ;

% One issue: our algorithm seems to be too fast to
measure! (keeps shosing O willseconds)

" How can we fix this? —— +vy longer arrays
\) "‘“ry dr’qerev\"' n

13

WA/ UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Which Case Do We Care About?

Vs a\\w\\/; ol the

+ We were measuring close to the best case! ~foxt of 4he wray

"= Didn’t matter how long our array was

+» Could measure average case instead
" Run many times on random numbers and average results

+ Instead, we’ll do worst case analysis. Why?
= Nice to know the most time we’d B
ever spend
= Worst case may happen often

" An algorithm is often judged by
its worst case behavior

14

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity

CSE120, Winter 2018

What is the Worst Case?

+ Discuss with your neighbor (no voting):
" Assume intArr.length is 1000000 and intArr[i] = i;
" Whatisa wcgrst case'&rgument for num for[LineaE]Search? C/D

esT case:
" What is a worst case argument for num for|Binary/Search?A/c/D
best wse: B - —
| boolean linearSearch(int num) {
A. SO o=
(Leg"'\h"“g) for(int 4 = 0; i < dintArr.length; i =4 + 1) {
0 sq
B. 500000 "V eturn truey
(middle)) ’
C. 1000000 }
(end) M return false;
D. 1000001 H#;
(r\cs\"\n &rf'&)’?
E. Something else

<€,\SC

15

WA/ UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Timing Experiments

» For array length 100,000,000 and IntArr[i1] = 1;
searching for 100,000,001

+ Let’s try running Linear Search on a worst case
argument value

= Results: 47,47,47,31,47 ms

+» Now let’s run Binary Search on a worst case argument
value

" Results: 0,0,0,0ms

16

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Runtime Intuition

« Does it seem reasonable that the runtimes were
inconsistent?

+» Some reasons:
" Your computer isn’t just running Processing — there’s a lot of
other stuff running (e.g. operating system, web browser)

" The computer hardware does lots of fancy stuff to avoid
slowdown due to physical limitations

- These may not work as well each execution based on other stuff going
on in your computer at the time

17

WA/ UNIVERSITY of WASHINGTON L21: Algorithmic Complexity

CSE120, Winter 2018

Empirical Analysis Conclusion

+» We’ve shown that Binary Search is seemingly much
faster than Linear Search

USQ"f\ 80\+
Vs.

Justin Gatlin

= Similar to having two sprinters race each other

+ Limitations:
= Different computers may have different runtimes

= Same computer may have different runtime on same input
"= Need to implement the algorithm in order to run it

+» Goal: come up with a “universal algorithmic classifier”

" Analogous to coming up with a metric to compare all
athletes betler athlete: Ss(:eetl skdrer or bobsledder !

18

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Outline

+» Algorithm Analysis: The Basics
+» Comparing Algorithms
+ Orders of Growth

19

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Characterizing Algorithms

+» The method computer scientists use is roughly:

1) Measure the algorithm’s runtime on many different input
sizes N (e.g. arrays of length 100, 200, 400, 800, ...)

- To avoid runtime issues, can also count number of “steps” involved

2) Make a plot of the runtime as a function of N, which we’ll
call R(N)

3) Determine the general shape of R(N)

- Does R(N) look like N (linear), N* (quadratic), N3 (cubic), log N
(logarithmic), etc.

20

WA UNIVERSITY of WASHINGTON

Linear Search

L21: Algorithmic Complexity

CSE120, Winter 2018

+ As the name implies, Linear Search is linear
= |f you double N, then R(N) should roughly double

N (input size) R(N) (time)

Runtime R(N)

‘l (4N ﬁra}3k+ l‘me

” 250 items 1.4 sec

7 500 items 2.8 sec
¥

671 items 3.8 sec

L 1000 items
M

Q (@ Xl mo:fc\\/

5.7 sec

700 800 900 1000

21

L21: Algorithmic Complexity CSE120, Winter 2018

YA/ UNIVERSITY of WASHINGTON

Binary Search

+» What order of growth is Binary Search?

= Analyze using number of “steps” in worst case

N (input size)

Indices to Check

Vioa‘;g A \gbr'\ﬂ'\ M lHU\d’(&d\‘DV\

7 @
1 items j_ 2 @
> &
5, 2items) EN IER
= e a» O B
4 4 items 3 b 1121314
— ©_ & 0 &
g, 8items LI q oy 13 (a\ls ¢z Tg
. T ® B & ®E
| b 16 1temS b I+ 1213 WIS 1612184 lolmle i3 Ju las |26]
3. ttems & l
q.- \R(f\)) = ﬂO‘%LO\))] ‘ogo-f'\’”\wﬁc.

6H irems

22

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Orders of Growth

+ The order of growth of R(N) is its general shape:

Constant 1 ‘ R ,
Exponential Cubic Quadratic

Logarithmic logN

Linear N
Quadratic N? /Lineak
Cubic N3

Exponential 2N

Factorial N! Logarithmic

Constant

Graph of order of growth curves
on log-log plot

23

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

Orders of Growth

+ The order of growth of R(N) is its general shape:

= Use dominant term

Exponential Cubic Quadratic

is quadratic

Go0s much faster thon e
Q%%N ws N= 00 Linear

Logarithmic

B ——

Constant

Graph of order of growth curves
on log-log plot

24

WA UNIVERSITY of WASHINGTON

Algorithm for: do any pairs in array sum to zero?

Which function does R(N) look like?
= Vote at http://PollEv.com/justinh

Peer Instruction Question

A.
B. log(N)
C. N
D. N?
E 2N

N (input size) R(N) (time)
100 items 1.1 seconds
200 items 4.3 seconds
300 items 9.6 seconds
400 items 17.0 seconds

L21: Algorithmic Complexity CSE120, Winter 2018

=
(o8]

e I~ I
o N O
L T L L

Runtime R(N)
o0

w UNIVERSITY of WASHINGTON L21: Algorithmic Complexity CSE120, Winter 2018

The Reason Order of Growth Matters

+» Roughly speaking, we care about really big N in real
world applications

" e.g. For Facebook, N (users) is ~ 1 billion

- Want to generate list of suggested friends? Better be a fast algorithm
as a function of N

+» Order of growth is just a rough rule of thumb

" There are limited cases where an algorithm with a worse
order of growth can actually be faster

" |n almost all cases, order of growth works very well as a
representation of an algorithm’s speed

26

WA UNIVERSITY of WASHINGTON

L21: Algorithmic Complexity CSE120, Winter 2018

Orders of Growth Comparison

+» The numbers below are rough estimates for a “typical”
algorithm on a “typical” computer — provides a qualitative
difference between the orders of growth

Linearithmic

Linear Quadratic Cubic Exponential Exponential Factorial

n nlog, n n? n? 576 22 n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=30 < 1 sec <1lsec < 1sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 <lsec <lsec <1sec 1sec 12,892years 107 years very long
n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10*° years, we simply record the algorithm as
taking a very long time.

27

