
Lecture 19: Computers
Pay no attention to the man behind the curtain.

Samuel Wolfson // CSE 120, Winter 2018

Final Project Administrivia
• Show off all the cool skillz you've learned this quarter!

• Three parts:

• Design Document due Saturday, Feb 24

• Includes project name and storyboard

• Project Update due Thursday, March 1 in lab

• Final Submission due Friday, March 9

• Single program, done alone or with a partner

• Should be much more complex than Creativity Assignment

• Must include at least 3 hand-created assets

What we're doing
• What components are inside of a computer?

• How do we tell the hardware what to do?

• How are our instructions executed?

What are different
computer components
that you've heard of?

Processor
Hard Drive

Memory
Motherboard

Five Logical "Components"
of a Computer

• Control

• Data path

• Memory

• Input

• Output

Computer

Processor Memory Devices

Control

Data
Path

Input

Output

Data "flows" through each of these components in a computer.

How does data "flow"
through a computer?

Input
• Devices that send information into the computer

• Examples we've seen

• Mouse

• Keyboard

• Ethernet / WiFi

• Other Examples

• Microphone

• Disk (read)

Output
• Devices that receive information sent out of the computer

• Examples we've seen

• Monitor / graphics card

• Ethernet / WiFi

• Other Examples

• Speakers

• Printers

• Disk (write)

Memory
• Used for temporary data storage

• Much faster than hard drives, but forgets everything when
power is lost!

• Volatile storage

• Permanent storage goes to the disk instead

• Nonvolatile storage

Central Processing Unit (CPU)

• "Brain" of the computer -- contains circuitry that carries
out all instructions given as input.

• Data path: circuits that hold and process data.

• Arithmetic operations (addition, subtraction, etc.)

• Control: tells the data path components how they
should handle certain instructions.

Computer

Processor Memory Devices

Control

Data Path

Input

Output

Data Flow Example
! "Add
together
4 and 8"

Computer

Processor Memory Devices

Control

Data Path

Input

Output

Data Flow Example
! "Add
together
4 and 8"

User inputs some command via keyboard, mouse, etc.

Computer

Processor Memory Devices

Control

Data Path

Input

Output

Data Flow Example
! "Add
together
4 and 8"add(4, 8)

Command is translated into bits, and stored in computer's memory.

Computer

Processor Memory Devices

Control

Data Path

Input

Output

Data Flow Example
! "Add
together
4 and 8"add(4, 8)

The control unit of the CPU reads data from memory into the CPU.

Computer

Processor Memory Devices

Control

Data Path

Input

Output

Data Flow Example
! "Add
together
4 and 8"add(4, 8)

The control unit determines that addition is performed by the arithmetic & logic unit.

Computer

Processor Memory Devices

Control

Data Path

Input

Output

Data Flow Example
! "Add
together
4 and 8"add(4, 8)

The ALU, which is part of the data path, performs the operation.

🕓

Computer

Processor Memory Devices

Control

Data Path

Input

Output

Data Flow Example
! "Add
together
4 and 8"add(4, 8)

Once the operation is complete, the control unit takes the result...

Computer

Processor Memory Devices

Control

Data Path

Input

Output

Data Flow Example
! "Add
together
4 and 8"add(4, 8)

...and stores it back into memory.

12

Computer

Processor Memory Devices

Control

Data Path

Input

Output

Data Flow Example
! "Add
together
4 and 8"add(4, 8)

Finally, the result is written to an output device...

12

Computer

Processor Memory Devices

Control

Data Path

Input

Output

Data Flow Example
! "Add
together
4 and 8"add(4, 8)

...and returned to the user.

12 🖥
"The
result
is 12"

Physical View

CPU
Socket

Memory

Storage
Connections

Operating Systems
• Everything that we've talked about up to this point is

hardware.

• Operating systems tie hardware and software together.

• Provide abstraction for user programs

• "Just another program," but has special privileges

• Can read data owned by other programs

• Heavily responsible for the security of the data and the
programs in your computer

There are lots of operating systems.

What we're doing
• What components are inside of a computer?

• How do we tell the hardware what to do?

• How are our instructions executed?

Computer Instructions
• We can feed certain instructions into a computer, and

retrieve the results.

• But what does an instruction actually look like? How do we
know which one to use?

• Like all other data on a computer, instructions are just
binary!

• Example: the number 0x83 tells computers with Intel
processors to add two numbers together.

• An executable file (program) contains the binary encoding of
all its instructions and data.

• Example: .exe files on Windows

Instructions Are Limited
• The number and types of instructions that a CPU can

perform is always limited.

• Example: with LightBot, you could only perform a certain
number of actions:

• The types of instructions that a certain computer can
understand is defined by the Instruction Set Architecture
(ISA).

• The CPU and other hardware are designed to execute
only these predefined instructions.

Types of Instructions
• Arithmetic operations

• Control flow: what should we do next?

• Normally, instructions are executed sequentially. However, we can
use control flow instructions to:

• Jump to function calls

• Possibly jump on conditional branches

• Possibly jump in loops

• Transfer data between the CPU and memory

• Load data from memory into CPU

• Store data from CPU into memory

c = a + b; z = x * y; i = h && j;

int i = 0;

while (i < 3) {
 i = i + 1;
}

Memory (reprise)
• We can treat memory like a single, massive array.

• Each memory entry is the same size (1 byte).

• Each memory entry has an index (the address) and a
value (the data).

• If our instructions need to reference data that is stored in
memory, they can look it up using the memory address.

Address 0x00 0x01 0x02 0x03 0x04 ... 0xFF...FF

Value 0xDE 0xAD 0xBE 0xEF 0xCA 0xFE

Example: suppose the load instruction loads a value from
memory into the CPU. What does load 0x04 return?

Where Are The Instructions?
• When a program is running, the instructions for that

program are stored in memory.

• It's much faster to read instructions from memory than
it is to read them from a file on the disk.

Storage in CPU

Memory

Hard Drive

Network

SpeedCapacity

Generating Instructions
• We need to figure out how we can specify complex tasks

using simple actions.

• Luckily, this is usually done for us -- by other programs!

Higher-Level Language
Program (Processing)

Assembly Language
Program (x86, MIPS, ARM)

Machine Language Program
(Executable File)

Compiler

Assembler

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

mov (%rsp), %edx
mov (%rsp,4), %ecx
mov %edx, (%rsp,4)
mov %ecx, (%rsp)

0000 1001 1100 0110 1010 1111 0101
1000 1010 1111 0101 1000 0000 1001
1100 0110 1100 0110 1010 1111 0101
1000 0000 1001 0101 1000 0000 1001

Bootstrapping
• But wait -- if we can use another program to compile our

program, how was that program compiled?

• Who compiles the compiler?

• The first compilers were written directly in binary.

• Bootstrapping means we use simpler languages to create
increasingly complex and abstract languages.

Assembly

C

Java

Processing

Ruby

Abstraction

What we're doing
• What components are inside of a computer?

• How do we tell the hardware what to do?

• How are our instructions executed?

Instruction Execution
• The agent (in this case, the CPU) follows instructions

flawlessly and mindlessly.

• Identical inputs ➡ identical results

• The program counter (PC) contains the memory address
of the current instruction.

• So the CPU knows what to execute

• Updated after each instruction is executed, sometimes
jumping around based on the program's control flow.

Fetch-Execute Cycle
• The most basic operation of a computer is to continually

perform the following cycle:

• Fetch the next instruction (read from memory).

• Execute the instruction based on its purpose and data.

• Execute portion broken down into:

• Instruction decode

• Data fetch

• Instruction computation

• Store result

Fetch
Instruction

Decode
Instruction

Fetch
Data

Compute
Instruction

Store
Result

Update
PC

Fetch-Execute Cycle

Address Value

0x00 12

0x01 6

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x02

PC Output

Current Instruction

Fetch-Execute Cycle

Address Value

0x00 12

0x01 6

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x02

PC Output

Current Instruction

The Program Counter points to the address 0x02 in memory.

Fetch-Execute Cycle

Address Value

0x00 12

0x01 6

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x02

PC Output

add 0x00, 0x01

Current Instruction

Fetch the instruction into the CPU.

Fetch-Execute Cycle

Address Value

0x00 12

0x01 6

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x02

PC Output

add 0x00, 0x01

Current Instruction

Decode what the instruction means.

x + y

Fetch-Execute Cycle

Address Value

0x00 12

0x01 6

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x02

PC Output

add 0x00, 0x01

Current Instruction

Fetch the necessary data from memory.

12 + 6

Fetch-Execute Cycle

Address Value

0x00 12

0x01 6

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x02

PC Output

add 0x00, 0x01

Current Instruction

Compute the result of the instruction.

12 + 6 = 18

Fetch-Execute Cycle

Address Value

0x00 12

0x01 6

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x02

PC

18

Output

add 0x00, 0x01

Current Instruction

And store it into temporary storage.

12 + 6 = 18

Fetch-Execute Cycle

Address Value

0x00 12

0x01 6

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x03

PC

18

Output

add 0x00, 0x01

Current Instruction

Now, advance the program counter to point to the next instruction.

Fetch-Execute Cycle

Address Value

0x00 12

0x01 6

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x03

PC

18

Output

store 0x1

Current Instruction

Fetch the next instruction into the CPU.

Fetch-Execute Cycle

Address Value

0x00 12

0x01 6

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x03

PC

18

Output

store 0x1

Current Instruction

Decode the instruction: "store the output value into memory at 0x01."

Fetch-Execute Cycle

Address Value

0x00 12

0x01 6

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x03

PC

18

Output

store 0x1

Current Instruction

Execute the instruction.

Fetch-Execute Cycle

Address Value

0x00 12

0x01 18

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x03

PC

18

Output

store 0x1

Current Instruction

Execute the instruction.

Fetch-Execute Cycle

Address Value

0x00 12

0x01 18

0x02 add 0x00, 0x01

0x03 store 0x1

Memory

CPU

0x03

PC

18

Output

store 0x1

Current Instruction

And so on, and so forth...

Clock Rate
• The rate at which your CPU can perform the Fetch-Execute

Cycle.

• Must ensure that the clock speed is slow enough to
accommodate the slowest instruction.

• Clock rate is usually given in Hertz.

• Example:

• However, clock rate is often not a good indicator of speed

• Modern CPUs spend lots of their time idle, waiting for
data from memory, disk drives, networks, etc.

2 GHz = 2 ⇤ 109 Hz

= 2 billion instructions per second

1 hertz =
1 instruction

second

Example: Running a
Processing Program

• The Processing environment compiles your code into
machine language (0s and 1s)

• Memory is automatically set aside for the program's
instructions, variables, and data.

• Starting from the beginning of your program (in the case
of Processing, the setup() function) the computer will
continuously perform the Fetch-Execute cycle.

• It will continue executing until the end of the program is
reached, or it encounters an error.

Summary
• What components are inside of a computer?

• Input, Output, Memory, CPU

• How do we tell the hardware what to do?

• CPUs understand a limited set of instructions

• We need to translate our abstract code (in Processing,
Java, etc.) to code in the CPU's instruction set

• How are our instructions executed?

• Program Counter keeps track of the current instruction

• Instructions executed using Fetch-Execute Cycle

• The CPU sometimes jumps around based on control flow.

