Computer Science Principles

CSE 120 Winter 2018

Instructor: Teaching Assistants:

Justin Hsia Anupam Gupta, Cheng Ni, Eugene Oh,

Sam Wolfson, Sophie Tian, Teagan Horkan

Ten years ago, Amazon changed Seattle, announcing its move to South Lake Union

"[Dec. 21, 2017] marks 10 years since Amazon committed to building an 11-building campus in South Lake Union. But before the company locked up that space, Amazon's landlord went to the city seeking a deal, sparking debates about the impact of development that have grown louder a decade on."

 https://www.seattletimes.com/business/amazon/ ten-years-ago-amazon-changed-seattle-announcingits-move-to-south-lake-union/

* 6 TAs:

CSE120, Winter 2018

Who: Course Staff

- Your Instructor: just call me Justin
 - From California (UC Berkeley and the Bay Area)
 - I like: teaching, the outdoors, board games, and ultimate
 - Excited to be teaching CSP again at UW!

- Available during lab, in office hours, and on Piazza
- An invaluable source of information and assistance
- Get to know us
 - We are here to help you succeed and improve your experience

CSE120. Winter 2018

Who: You!

- 61 students registered
 - Undergrads from many different majors (or pre-majors)
 - This class is intended for students without significant previous experience with computing/programming
- Get to know each other and help each other out!
 - Learning is much more fun with friends
 - Working well with others is a valuable life skill
 - Diversity of perspectives expands your horizons
- Submit Pre-Course Survey so we can find out more

Why Study Computer Science?

- Massive impact on our lives and society as a whole
- Increasingly useful for all fields of study and areas of employment
 - Creative Writing word editing, spell check, need to outcompete robots soon!
 - Massage Therapist massage robots soon?
 - Dancing stage lighting, motion capture to study technique
 - Ren Faire Actor analyze data on ticket sales, popular booths

Computing in Your Future

- Computing and its data are inescapable
 - You generate "digital footprints" all the time
- Computing is a regular part of every job
 - Use computers and computational tools
 - Generate and process data
 - Dealing with IT and software people
 - Understanding the computational portion of projects
- Our goal is to help you make sense of the "Digital Age" that we now all live in

Computing and Society

Raise your hand if:

- You know someone who works from home
- You have "stalked" someone online
- You communicate mostly using images instead of words
- You have taken extra trips outside to catch that Pokémon
- You get the majority of your news from social media
- The majority of the media you own (e.g. music, movies, books, art, games) is digital
- You know someone who's had their identity or credit card number stolen online
- You've seen a parent quiet a child by giving them a digital device

What This Course IS

This course is split into two major themes:

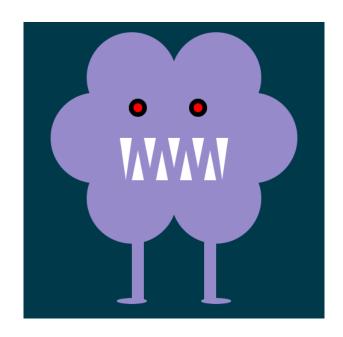
1) Computational Thinking

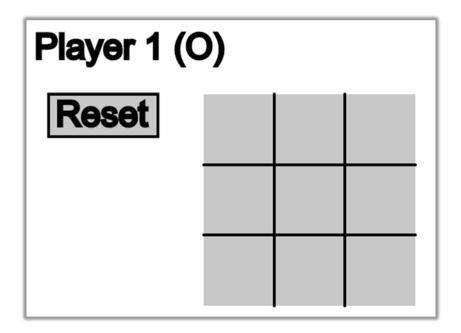
- How can you use computers to solve problems
- Using programming as a tool

2) Computational Principles

- The "big ideas of computing" that we think everyone should know
- e.g. bits can represent anything and everything, what a computer can and can't compute, how do websites and the Internet work, social implications of computing

What This Course Is NOT


- Preparation for CSE142: Computer Programming I
 - This is not just a programming course
 - Introduce you to the concepts, but not expect you to master them
 - But great if you feel motivated to continue afterward!
- Trivial
 - Supposed to be material you haven't seen before
 - A technical class that asks you to read and write and be creative
- Boring or back-breaking
 - Assignments intended to be fun, interesting, and reasonable


About Programming

- programming ≠ computational thinking
 - Computational thinking is knowing how to break down and solve a problem in a way that a computer can do it
 - Programming is the tool you use to execute your solution
 - We use programming in this course as a way of teaching computational thinking
- Can be learned, just like any other skill
 - It's not black magic; there's no such thing as a "coding gene"
 - Yes, at first it may be challenging and mind-bending just like learning your first non-native language
 - My hope is that you will think differently after this course

Programming in CSE120

- Use a language called Processing
 - Text-based language that is good for visuals and interaction
 - We will use Java syntax
 - At the end of the day, the language you use doesn't matter as long as you develop computational thinking skills

Big Ideas of Computing

- Exposure to a broad range of topics in computer science
 - Not going to dive into the details
 - These are the motivations & the applications for programming (the tool)
 - Focus on what to be aware of to navigate the digital world
- Goal: become "literate" in computing
 - As new innovations arise, can you read about it, understand its consequences, and form your own opinion?
 - This course will ask you to read, discuss, and write about computing innovations

Lecture Outline

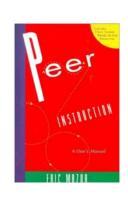
- Course Introduction
- Course Policies
 - http://courses.cs.washington.edu/courses/cse120/18wi/syll abus/#policies
- Abstraction

Communication

- Website: http://cs.uw.edu/120
 - Calendar, schedule, policies, labs, links, assignments, etc.
 - Grade book and assignment submissions via Canvas
- Discussion: http://piazza.com/washington/winter2018/cse120
 - Ask and answer questions staff will monitor and contribute
 - ALL questions on course material should go here
- Office Hours: spread throughout the week
 - Can also email to make individual appointments
- Anonymous feedback form

Weekly Schedule

- Lectures are Mon, Wed, Fri (3 hr)
 - Friday lectures will generally be reserved for "Big Ideas"
- Weekly reading is due before lab on Thursday
 - All readings online, complete "reading check" to prep
- Labs on Tue, Thu (3 hr)
 - Worksheets and work time with help from TAs
 - 10-15 minutes at start of Thu lab will be spent discussing the weekly reading
- Can be a demanding schedule, but should be fun!


Monday	Tuesday	Wednesday	Thursday	Friday
Lecture	Lab	Lecture	Lab (Reading)	Lecture

Course Components and Grading

- Programming Assignments (40%)
 - Includes a website portfolio of your work
- Final Project (20%)
 - Of your own choosing!
- Written Assignments (15%)
 - Includes reading checks, field trip report, mini research report
- Exams: Midterm (10%) and Final (10%)
 - Double-check your understanding of concepts
- * EPA: Effort, Participation, and Altruism (5%)
 - Encourage class-wide learning

Peer Instruction

 Increase real-time learning in lecture, test your understanding, increase student interactions

- Lots of research supports its effectiveness
- Multiple choice question at end of lecture "segment"
 - 1 minute to decide on your own
 - 2 minutes in pairs to reach consensus
 - Learn through discussion

- Vote using Poll Everywhere
 - Use website (https://www.polleverywhere.com) or app
 - Linked to your UWNetID

Some topics that we will touch on

- Which of the following seems the most interesting to you? (vote at http://PollEv.com/justinh)
- A. How do I program simple game mechanics?
- B. How does a computer work?
- c. How has the Internet changed the way we interact with each other?
- D. What is copyright and how does it apply to digital works
- E. What is artificial intelligence?
- F. What will I do if/when my job gets taken over by robots (i.e. automated)?

Hooked on Gadgets

- Gadgets reduce focus and learning
 - Bursts of info (e.g. emails, IMs, etc.) are addictive
 - Heavy multitaskers have more trouble focusing and shutting out irrelevant information
 - http://www.npr.org/2016/04/17/474525392/attention-students-putyour-laptops-away
 - This applies to all aspects of life, not just lecture
- NO audio allowed (mute phones & computers)
- Non-disruptive use okay
 - Stick to side and back seats
 - Stop/move if asked by fellow student

To-Do List

- Explore website thoroughly: http://cs.uw.edu/120
 - Read through the full course policies!!!
- Check that you are registered on Piazza, Canvas, and Poll Everywhere
- Pre-Course (Introduction) Survey due tomorrow (1/4)
 - More assignments will be introduced in lab tomorrow

Lecture Outline

- Course Introduction
- Course Policies
- * Abstraction

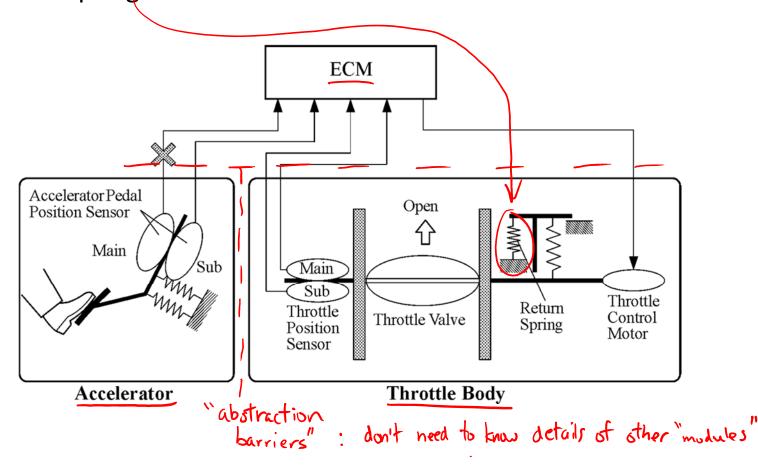
```
abstract art
Ly not depict anything that's real
abstract description
Ly "levels" of concepts/details
paper abstract
Ly summary, main points
```

Complexity and Abstraction

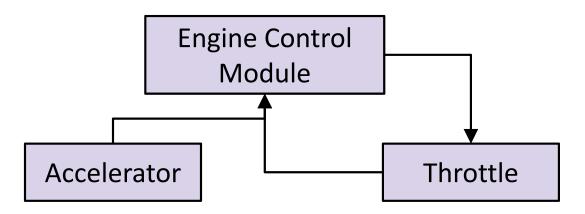
- Programming is straightforward, as long as your programs are small
 - Complexity is our enemy
 - Abstraction is the key to conquering complexity
- Abstraction allows us to build general-purpose artifacts
 - Detail Removal: Hide unnecessary details from users and designers
 - Generalization: Avoid unnecessary repetitive work
- Learning to reason using the most appropriate abstraction is a key goal of computational thinking

"The act or process of leaving out of consideration one or more properties of a complex object so as to attend to others."

Henri Matisse "Naked Blue IV"



Maps for directions


- Detail removal example:
 - Modern user interface: Right pedal is "accelerate", left is "decelerate"
 - Even as underlying technology has changed, this abstraction has not!
 - Computer controlled fuel injection
 - Anti-lock brakes (ABS)

- Detail removal example:
 - Hide unnecessary details from other designers
 - e.g. Engine Control Module (ECM) designer doesn't care about the return spring inside the Throttle!

- Detail removal example:
 - Hide unnecessary details from other designers
 - e.g. Engine Control Module (ECM) designer doesn't care about the return spring inside the Throttle!
 - Nice to be able to think of a system as a hierarchy of well defined "chunks" with precise functionality
 - In CS, we say that we have a separation of concerns

Abstraction: Generalization

"The process of formulating general concepts by abstracting common properties of instances."

- Extensible shower rods
- Adjustable hats and belts
- Single recipe for <fruit> cheesecake
- Feeding animals on a farm
 - To feed <animal>, put <animal> food in <animal> dish

Audience Responses

- Other examples of detail removal:
 - Operating a camera just push a button
 - Sciences abstracted structures/diagrams
 - Simple name for complex phenomena
- Other examples of generalization:
 - Apply formula repeatedly (Excel)

Summary

- Abstraction is one of the most important challenges in computer science
 - How do you identify the right abstraction you need (block to build) to solve your problem?

- Think about computers:
 - How many of you actually know how a computer works?
 - How many of you can use a computer?
 - Thanks to abstraction!!!