
© 2011 Lawrence Snyder
1

Resource: Variables, Declarations & Assignment
Statements

Three interrelated programming concepts are variables, declarations and assignment
statements.

Variables 
The concept of a variable is a powerful programming idea. It’s called a variable because
– now pay attention – it varies. When you see it used in a program, the variable is often
written like this

r = 255;

(r is the variable and the whole thing is the assignment statement). You get the idea from
such usage that a variable is like an unknown in algebra. But, it’s nothing like that. (More
about the difference below.) What a variable is is a container for a value. So, r in the
example will “contain” the value 255. It’s a number, of course, but whatever a variable
contains is called is value.

I used a simple letter for my variable in this example, but variables in Processing (and
most languages) can be any string of letters and numbers (and underscore _) as long as
they start with a letter, and they are case sensitive. Examples of other variables are:

x
area
abc
ABC
really_long_variables_are_annoying_to_type

Declarations 
The other thing about variables is that they have a data type, which is the sort of
information they can contain. So, I write,

int r = 255;

which says that r is a variable that will contain an integer, that is, a whole number.
Another choice for a variable type would be float, which is the programming term for
“decimal” numbers, that is, numbers of the form 3.14159.

The text

int g = 0;

CSE120: Computer Science: Principles

© 2011 Lawrence Snyder
2

is called a declaration statement, because it declares that the variable will contain an
integer; and in this case, the integer starts out as the value 0. I want to make one more
declaration,

int b = 0;

which, as you now know, declares b to be container for integers, starting by containing 0.
Also, it is possible to declare a variable without giving it an initial value, as in

int temp;

There are other data types besides int and float that need to be declared in Processing.
Find them at http://processing.org/reference/ in the index headed Data. It’s also is a good
place to get further explanation.

Assignment 
To make a variable vary, we assign a new value to it. This is done, unsurprisingly, in an
assignment statement such as

b = r; // Set b to have the value r has

which says, the contents of r (recall, it’s a container) are assigned to or replace the
contents of b. The flow of information is from right to left, from r to b, in this case.
Some programmers say, “b gets r”, meaning b is replaced by the value of r. Notice that
we are discussing information here, so nothing happens to the value of r. It is unchanged.
It’s still there. We simply get a copy of that same value in b.

Examples 
Here are some declarations

int area, long_side, short_side; // declaring 3 integer variables
float radius, force, mass, acceleration; // declaring 4 float variables
float pi = 3.1415962; // declare a float initialized to π
…
area = pi * (radius * radius); // compute area of circle
force = mass * acceleration; // compute a physics law
long_side = area/short_side; // compute a fact about rectangles

We like to have the declarations at the top of the program (or the start of a function
definition, as explained later).

Assignment (continued) 
An important fact about variables is that declaring them only says how they are used.
They don’t start out with any value unless initialized, and they don’t get any value until
you assign one. So in the examples in the last section the assignment statements, such as

© 2011 Lawrence Snyder
3

area = pi * (radius * radius);

are meaningless unless the variables first are assigned values. pi is, but how are we
supposed to square the radius (that is, multiply it times itself) unless I know its value
(that is, what float it contains)? I assumed that variables were assigned values in the
program where the ellipsis (…) is given.

We use the equal sign (=) to indicate assignment, but as stated above, it doesn’t mean
“equals;” it means “transfer the value from the right hand side to the variable on the left
hand side.” This difference is extremely important, so let’s say more about it.

Computing Is Not Algebra 
The assignment symbol is not the “equality” of algebra, and variables are not the
unknowns of algebra. Here’s how we know.

Suppose I write

int x = 0;

telling the Processing language that I want the variable x to have whole numbers as
values, and that the first whole number it has will be 0. And then later in my program I
want x to be 1 larger than it is presently. In programming, I write

x = x + 1;

which means that x is to be assigned the value it already has, increased by 1. That is, its
value becomes one larger as a result of the assignment statement. Other examples might
be assignments in a program that simulates basketball in which

score = score + 3;
shot_clock = shot_clock – 1;

is written to record the result of a 3-point basket, or elapse of a second on the shot clock.
As before, the assignment means add three to score’s current value and make the result
the value of score. That’s how assignment works.

But in algebra, the equal sign means that the values on both sides are the same. So the
way you know computing isn’t algebra is that

x = x + 1

is meaningless in algebra. No number equals itself plus one. That is a contradiction. So,
when you see assignment statements in programming, realize that they mean to transfer
the value from the right side to the left side. They don’t mean equality.

