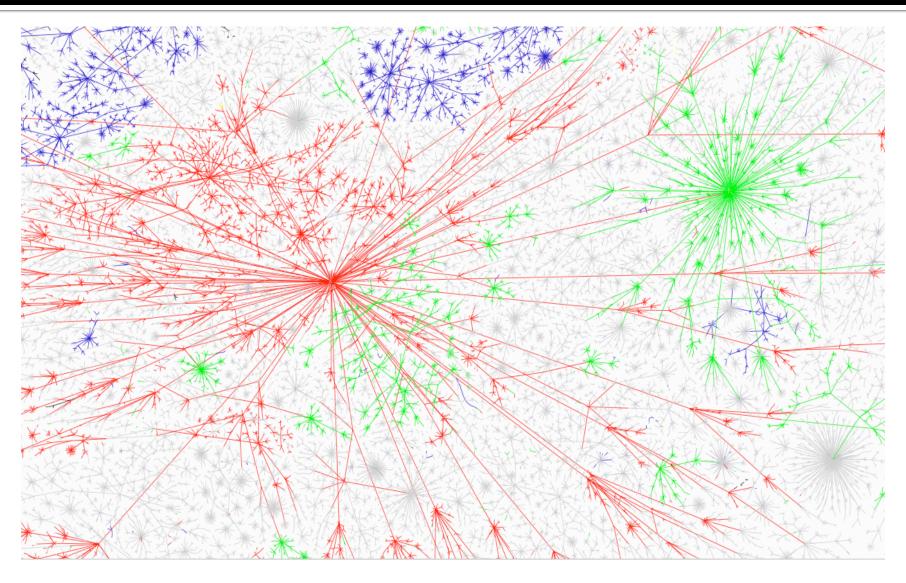
Announcements

- Tuesday's Lab is not in the lab ... go to CSE403
 - Richard Ladner speaks on accessibility ... this is course content
- Due Date for Pairs Programming ...
 Wednesday at lecture time

Relating the "logical" with the "physical"

Domain Name System

Lawrence Snyder University of Washington, Seattle


Recall 2 Ways To Name Computers

- Logical: Humans use domain names
 - spiff.cs.washington.edu
- Physical: Computers use number-quads
 - **128.208.3.136**
- This is different than the phone system:
 - The people use numbers: 1 800 555 1212
 - The equipment uses the same numbers
- A key property of computers: they can separate the logical form (preferred by people) from the physical form they must use

Today ...

- Today, we explain how the logical/physical separation is implemented for domain names
- But, this is also a chance to illustrate the structure of LARGE systems
 - Study the basic components
 - Study design ideas that make the system work well
 - This matters to you because you'll probably have "big ideas" about using computers

Portion of Physical I'net

What's the Problem?

- The Internet is completely decentralized
 - No one is in charge ICANN

Internet Corporation for Assigned Names and Numbers

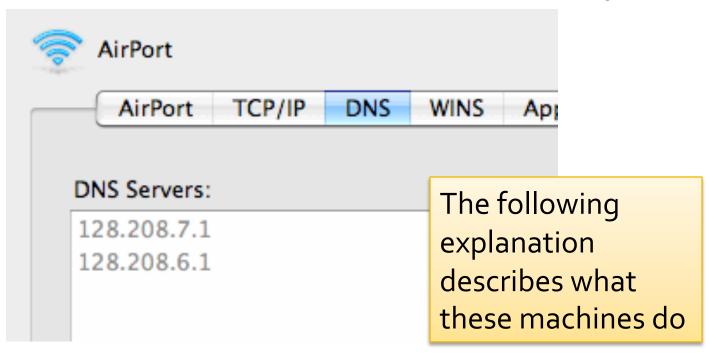
- A few companies get permission to give users or organizations IP-addresses – not much logic to it
- When a person or organization gets an IP-address, it picks a domain name – few rules
- Once connected to l'net, users start using domain name ... but when someone refers to it, how does their computer get its number??

Recall mail to "friend@cise.ufl.edu"

68.87.205.1	-	Mt Laurel, usa
68.85.240.101	be-70-ar01.burien.wa.seattle.comcast.net	Mt Laurel, usa
68.85.240.69	be-30-ar01.seattle.wa.seattle.comcast.net	Seattle, WA, USA
68.86.90.213	pos-0-5-0-0-cr01.seattle.wa.ibone.comcast.net	Seattle, WA, USA
68.86.85.206	pos-0-8-0-0-cr01.portland.or.ibone.comcast.net	Portland, OR, USA
68.86.85.197	pos-1-15-0-0-cr01.sacramento.ca.ibone.comcast	Sacramento, CA, USA
68.86.85.181	pos-0-9-0-cr01.sanjose.ca.ibone.comcast.net	San Jose, CA, USA
154.54.11.105	te3-3.mpd01.sjc04.atlas.cogentco.com	San Jose, CA, USA
154.54.0.177	te9-1.ccr02.sfo01.atlas.cogentco.com	San Francisco, CA, USA
154.54.3.137	te3-8.ccr01.lax01.atlas.cogentco.com	Los Angeles, CA, USA
154.54.0.226	te3-8.ccr01.iah01.atlas.cogentco.com	Houston, TX, USA
154.54.24.194	te3-2.ccr01.mia01.atlas.cogentco.com	Miami, FL, USA
154.54.1.186	te3-3.ccr01.mia03.atlas.cogentco.com	Miami, FL, USA
38.112.31.66	florida_lambdarail_llc.demarc.cogentco.com	Washington, DC, USA
198.32.155.10	tpa-flrcore-7609-1-te21-1.net.flrnet.org	Marina del Rey, usa
198.32.173.161	tlh-flrcore-7609-1-te41-1907.net.flrnet.org	Marina del Rey, usa
198.32.173.162	ctx36-ewan-msfc-1-v1907-1.ns.ufl.edu	Marina del Rey, usa
128.227.236.85	ctx36-nexus-msfc-1-v50-1.ns.ufl.edu	Gainesville, FL, USA
128.227.236.14	csev1-core-msfc-1-v41-1.ns.ufl.edu	Gainesville, FL, USA
128.227.254.74	-, -, -, -, -, -, -, -, -, -, -, -, -, -	Gainesville, FL, USA
128.227.205.2	<u>cise.ufl.edu</u>	Gainesville, FL, USA

A packet sent to 128.227.205.2 finds its way

But, how do we get 128.227.205.2?


When we send mail to a friend at the U of FL, we type friend@cise.ufl.edu and the computer that sends mail for us on campus needs to find out this fact:

cise.ufl.edu == 128.227.205.2

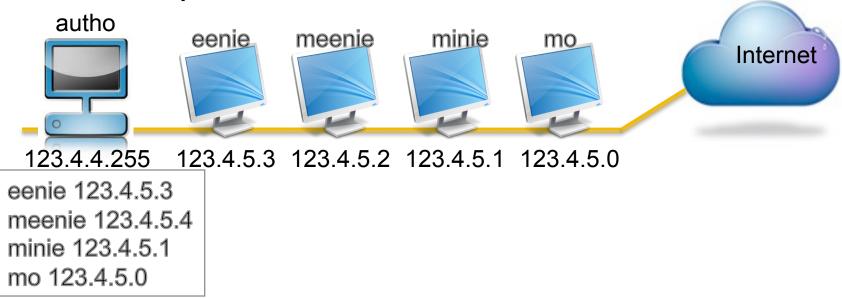
We said it asks the Domain Name System, or DNS ... so what happens

But Wait!

- How does it know the address of the DNS?
- You (or someone or something who set up your computer) told it when connecting it to the network ... look in net control panel

First Step

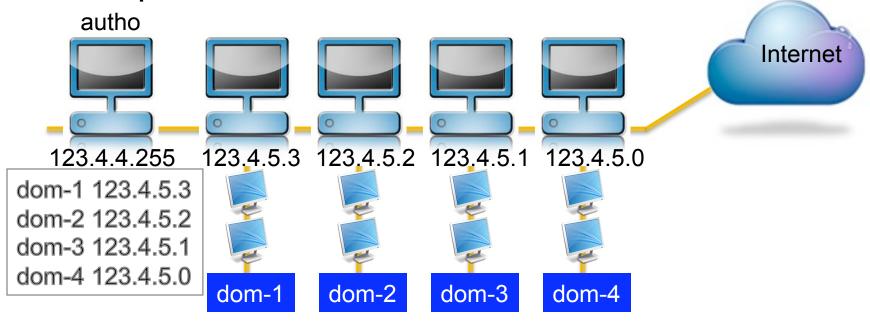
- The DNS server answers the question "what number is cise.ufl.edu?" by this method
- First Step: Look it up in the "address book"
 - The DNS server does that
 - It keeps its own address book, a list of all of the domain names like cise.ufl.edu that it has been asked about and found
 - We say it caches the addresses it's found
 - caching keeping a copy around in case need it again
 - It checks the cache first


If It Has Never Been Asked ...

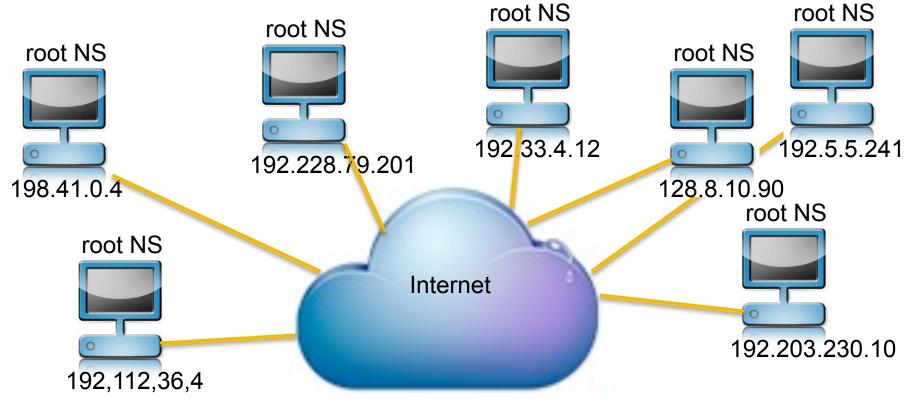
- The address will not be in the cache if this is the first request
- Second Step: The DNS server begins a process of finding the address on behalf of your computer ...

That process uses 2 Facts of I'net

The DNS Design: Fact 1


 Every domain has an authoritative name server, which I'll call autho

 Two Cases: Autho knows the number of every computer in its domain


The DNS Design: Fact 1 (Continued)

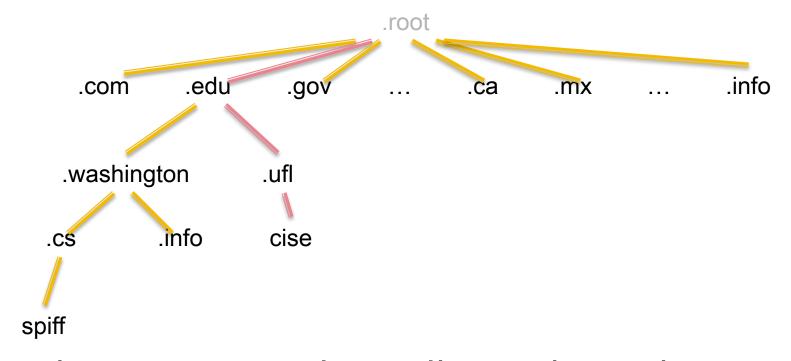
 OR Autho knows the number of every autho computer in its domain

The DNS Design: Fact 2

There are 13 Internet "root name servers" scattered around the world ... all the same

All DNS servers have their numbers

So, Here's How It Goes ...

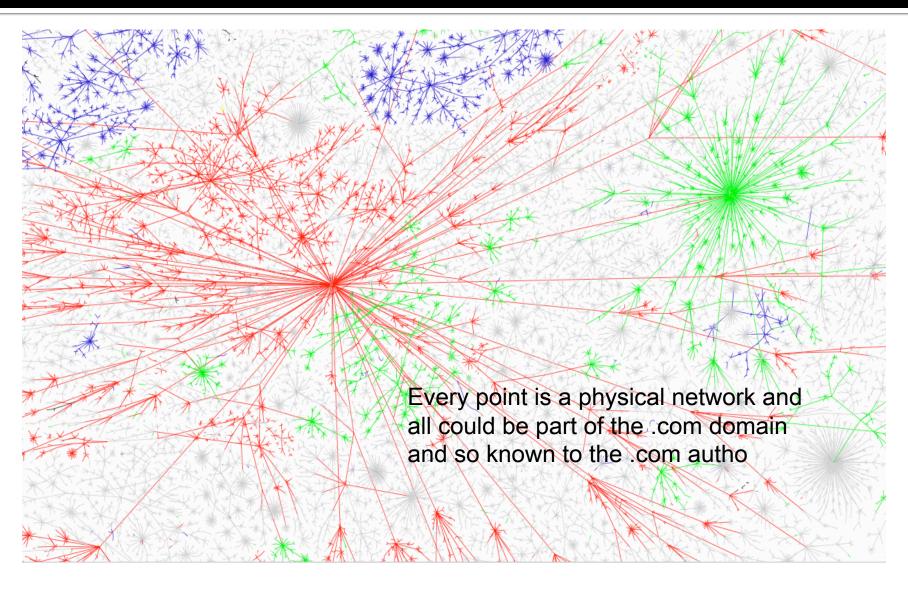

- Your computer's DNS server never heard of cise.ufl.edu.root ... so it pulls the domain name apart:
 - cise, a computer in the .ufl domain
 - ufl, a domain in the .edu domain
 - edu, a domain in the .root domain
- So, the DNS begins at the end and starts asking for the numbers of the autho computers ... who's the autho for the .root domain?

Your DNS Asks the .root NS

- Please give me the number of .edu autho
 - Getting that it asks it, ...
- Please give me the number of .ufl autho
 - Getting that it asks it, ...
- Please give me the number of the cise machine
 - Getting 128.227.205.2, it addresses your email and sends it on
- Simplification: it might have cached .edu autho and .ufl autho, which saves those requests

Logical Names Form Hierarchy

As a hierarchy, it can be shown as a tree:



 The DNS is simply "walking" down the tree asking each autho for the number of next item

Exercise:

- I was in Miami last week working at a hotel and went to log into my computer at UW
 - spiff.cs.washington.edu
- How did the hotel's ISP find 128.208.3.136?

Think About This Scheme: Huge

Suppose A Domain Adds Computer

- When a domain, say .ufl, adds a new computer it gets a name and an IP-address
- They add its name and number to the list in ufl autho's memory and its up and running, "known to the world"
- This is a completely decentralized solution –
 no one needs to be in charge except to make
 sure that the domain autho is up & correct

Properties ...

- Fault tolerant: when a hurricane takes out Miami's power, only the domains without power are affected ...
- Robust: when a fire burns down the building of a .root name server, 12 others can carry the load
- Enormous capacity: most lookups are independent and do not collide (b/c higher level domain authos are cached), but more capacity is possible by replicating authos

Compare DNS Structure To ...

- Master List Solution ...
 - Suppose the design was for the root NS computers to have a master list of all domain_name: IP-address
 pairs connected to the Internet
- How would it be different, better or worse?