We're underway ...

# **Following Lightbot**

Lawrence Snyder University of Washington, Seattle

#### **Announcements** ...

- Please fill out the "pre-course" survey if you have not yet done so
- "Bring" a digital picture of yourself to Lab on Thursday ...

### Two Paths Diverge in the Lectures

- As noted, this class is about principles, and about learning to use computational thinking to solve your problems
- I will use a 2-thread class structure ...
  - One thread will cover principles and key knowledge that everyone should know about CS
  - The other thread will focus on "doing stuff" reasoning, analysis, abstracting, programming, problem solving, creating, etc.

Think of the first as concepts, the second as capabilities

## Today – They Are Merged

- Topic: The act of directing a computer to do something ... called programming
- The Lightbot 2.0 exhibited many properties of programming, so to launch both threads we will review what those properties are. (I have a complete list at the end.)

#### As Experienced Lightbot Hackers

What are you doing in Lightbot?



- Commanding a robot through a "blocks world"
- Programming is commanding an agent

### Agent, Instructions, Intent

- Other aspects of "commanding"
  - The agent is usually a computer, but it could be a person, or other device (animated robot?)
  - The agent follows the commands a/k/a instructions, flawlessly, and stolidly, doing only what it is asked
  - The program implements human intent you try to get the robot to the Blue Tile goal – it's the point of your instructions

## Sequencing

- Instructions are given in sequence
- They are executed in sequence essential
  - Instructions ...
    - From a limited repertoire
    - All are within agent's ability; no JUMP\_3
    - Executed oneat-a-time



A "program counter" keeps track of agent's progress

#### Instructions Formed of Simpler Instructions

- Check out this screen shot of the Lightbot
- It is partway through an instruction ... its beacon is lit, but not the tile
- To a programmer the instruction is monolithic (one thing)
- To an agent each instr. is a series of steps



An Instruction *abstracts* those steps

#### Abstraction

- The word "abstraction" is used a lot in computing, and in this course
- The instruction example just given illustrates functional abstraction meaning that we have given a name to a series of operations that perform a coherent (and to us meaningful) activity; the name is the instruction, the series of operations are the bot's actions to implement it

#### Abstracting

- Collecting the operations together and giving them a name is functional abstraction
  - The group of operations perform some function
  - Giving that function a name is functional abstraction
  - It doesn't seem like a big deal ... and if it wasn't AMAZINGLY powerful, it wouldn't be
  - What makes it powerful, is we can forget about the operations and think only about the function they do; more about this later
- Let's do some functional abstraction

## **Functions Package Computation**

F1() packages actions: E.G. "process a riser"



#### The Function Becomes A Concept

 Because F1() "processes a riser," I think of the programming task as

Process a riser F1

Move to next riser

Process a riser F1

Move to next riser

Process a riser F1

- With F1() as a concept, I simplify the programming to just 5 steps rather than 21
- It also suggests another concept:
  - Move\_to\_ next\_ riser ( )

## A Five Instruction Program



#### Here Is What Is Beautiful ...

Did everyone see 1 idea, 2 applications?

- Slide 8 •To a programmer the instruction is monolithic (one thing)
  - •To an agent each instruction is a series of steps



#### Slide 11

- F1(): Process Riser
- F2(): Move To Next Riser







It is one concept here, but here it is eight instructions

#### Abstraction ...

- Formulating blocks of computation as a "concept" is functional abstraction
- What we did is important here ...
  - We spotted a coherent (to us) part of the task
  - We solved it using a sequence of instructions
  - We put the solution into a function "package", gave it a name, "process a riser," and thus created a new thing, a concept, something we can talk about & use
  - Then we used it to solve something more complicated ... and probably repeat this approach at the next higher level

## Keep Using Abstraction ...

If M.C. Escher handed us a problem ... what would we do?



It only simplifies our **thinking**; the bot still does all the work

#### The Function Is Just The Packaging

Another way to use a function for the risers



## **Summary From Lightbot 2.0**

- Programming is commanding an agent
  - Agent: usually a computer, person, or other device
  - Agent follows instructions, flawlessly & stolidly
  - The program implements human intent
- Instructions are given in sequence
- ... and executed in sequence
  - Limited repertoire, within ability, one-at-a-time
  - "Program counter" keeps track current instruction
- Formulating computation as a "concept" is functional abstraction