CSE120: Computer Science: Principles B

Homework 14: Enumerate Recursively

circles

Goal: To enumerate four items in sequences of three using a
recursive algorithm in Processing. There will be n = 4> = 64
total possibilities. You can enumerate squares or ellipses if
you wish, but the easiest thing is to enumerate strings of
characters. The solution at right prints the results in two
columns.

Notice: This assignment does not explain in detail what to do;
instead it expects you to use the hearts example from class as
a guide (see below). So, the first step — really, don’t bother
reading further at this point — is to understand the hearts
enumeration.

What To Do

Set up a standard processing program. (This one can be
static.) Study the recursive enumeration presented in class,
and notice how two String arrays are used. (String arrays
were used in the last assignment, too, and are described in the
Strings and Arrays Resource.) We need one array element for
each of the 64 different configurations.

After setting up a standard Processing program, the following list of steps should do the

job.
1)
2)

3)

4)
5)

To have a heading, load a standard font of your choice.

To use UTF characters, like the blocks shown in this example, load a font of
“special Unicode blocks”. (Explained below.) It’s like any other font and requires
the same treatment — create, load, select — except instead of letters it has groups of
similar UTF-8 symbols, such as the blocks shown in the example.

Because it is hard to type these special characters, grab them out of the file called
utf8Characters.txt provided. Use them to initialize a String array like
binDigits[]. (You can use other characters if you wish.)

Write a recursive function to enumerate these four items.

Return to the draw( ) block and print out your results. A smart technique is to
write a function (in Step 4) first that simply puts the first character into each
element of the array, and prints it out.

That’s it!

Loading Special Characters

To get the fancy characters like the hearts or the blocks shown here, you need to load a
special part of the UTF character space. To do this, navigate as follows in Processing

Tools > Create Font ... > select a simple font; [ chose LucidaSan-12 > Character ...

© 2011 Lawrence Snyder
1



Then scroll down past the fonts for many languages, until you get to the Miscellaneous
Symbols and the Geometric Shapes. Click those and complete. See this screen shot:

Create Font i
000 Character Selector

Use this tool to create bitmz
Select a font and size, and

It will be added to the data Default characters will include most bitmaps for Mac OS

and Windows Latin scripts. Including all characters may
require large amounts of memory for all of the bitmaps.

LiHeiPro For greater control, you can select specific Unicode blocks.
LiSongPro Py
LiSungLight (U Default Characters
LucidaBright-Demi O All Characters
LucidaBright-Demiltalic ® Specific Unicode Blocks
LucidaBright-Italic _
LucidaBright = Miscellaneous Technical
LucidaSans-Demi __ Control Pictures
LucidaSans | ) Optical Character Recognition
LucidaSans-TypewriterBold | | Enclosed Alphanumerics @
LucidaSans-Typewriter __ Box Drawing
LucidaBlackletter __ Block Elements
| ™ Geometric Shapes a
:
Forsaking monastic tradition, @
Size: 12 Z Smooth 7
Filename: LucidaSans-12 viw

("Cancel ) (OK )

Notice that you will have to switch between this font and your caption font when you
want to change what you are printing out.

Wrap-Up

You have used a recursive Processing program (hearts) to guide your development of a
recursive program to enumerate four items in sequences of 3. You have also noticed how
it would be easy to modify this program to enumerate sequences of k items in sequences
of m.

To Turn In
Submit your program to the class drop box, with its name changed to <yourname>.pde

Hearts Enumeration Code

FFont myFont, mySpecial; /fTwo fonts are needed

int n = 16; wo hearts in fours = 2°¢4
Stringl] seq = new Stringlnl; The sequences are strings
Stringl] binDigits = {"¥", "O"}; //The two letters to be displayed

© 2011 Lawrence Snyder
2



void setup( ) { .
<izc(208, 558); Gieting WMy Heart
myFont = loadFont ("EdwardianScript ITC-24.vlw");//Get the caption font z

mySpecial = loadFont("LucidaSans-24.vlu"); //Get the UTF-8 block with hearts 1};310%144;(/
SmDDth();

fill{255,8,8); //Hearts are red ""
L A 4 AV,
void draw( ) {
background(255); "O'
SmDDth();
textFont (myFont); ; "O@

//Prepare for the caption
text("Putting My Heart", 28, 28);

//Caption, line 1 '@"

}

text("Into Binary", 28, 45); //Caption, line 2
textFont (mySpecial); //Prepare to display UTF-§ '@'O
for (int i=@; i<n; i++) { Aflnitialize with empties

seqlil = ""; '@@'
}
addon{n, 8, ""J; //Build the String sequences '@@o
for (int j=B8; j< ny j++) { //And print them
text(seqlj], 28, 8@+)*38); O"'
) VA 4 4V,
}
ddon( b d ) A Q'O'
void addon(int span, int base, String nextdigit
/fspan is the number of strings O'@O

! that get the same charag

//base is where those strings :;t.alr't @O"

'y

ro in the array

/fnextdigit is the character that OQ'O
is to be appended this time

for (int i = 8; i < span; i++) { @OO'

seqli+base] = seq[i+base] + nextdigit; //Set these items in the array @OO@
}

if (span > 1) { //Are we finished?
addon{span/2, base, binDigits[8]); //No, do one character in the first 1/2
addon{span/2, base+span/2, binDigits[1]); //And the other character in the second
}
}

© 2011 Lawrence Snyder
3



