
Homework 6: Homage to a Square

Goal: The purpose of this is to practice with Processing, and to lay the foundation for our
future discussion of Artificial Intelligence, an important branch of computer science.
You will gain some experience with Processing and learn three new CS concepts:
randomness, variables and data types.

Art In A Click 
Computer art, that is, art generated by computers, not art created by people using
computers, leads to some fun Web sites. We will try two of these before getting started
on our own computer art project.

Instructions: Click around on the Web to familiarize yourself with various artists’ work.
(You will want to save a screen shot of your work in Steps 1 & 2 to be turned in later.)

Step 1: Perform a Google search on “piet mondrian" and
then click the Images link at the top of the returned hits
list. Scroll through the images to get an idea of his work.
He was a cubist and created pictures that look like the
one at right. This, however, was a computer generated
“Mondrian” … try creating some yourself at
http://www.netlabs.net/hp/richieb/java/Mondrian.htm.
Take a screenshot of one of your creations

Step 2: Perform a Google search on “jackson pollock”
and then click on the Images link at the top of the
returned hits list. Scroll through the images to get an
idea of his work. He was an abstract expressionist and
created paintings that look like the one at right. This,
however, was a computer generated “Pollock” … try
creating some yourself at
http://www.jacksonpollock.org. Take a screenshot of
one of your creations

Step 3: Perform a Google search on “josef albers” and
then click on the Images link at the top of the returned
hits list. Scroll through the images to get an idea of his
work. He was an abstract painter, and created works that
look like the one at right. This, however, was a computer
generated “Albers” … try creating some yourself at …
Oops! First you’ll have to write the Albers In A Click
program!

CSE120: Computer Science: Principles

Albers In A Click 
The program skeleton is shown at right.

Here’s how it works: It starts by defining
some variables (explained below). In the
setup() it initializes the canvas, and
then it picks two random colors – these are
the outer color of the Albers image and the
inner color. In the draw() component,
the program picks two “in between” colors
using a math function called interpolation
(lerpColor). We don’t worry about how
that works. Then it draws the rectangles,
outer to inner. Finally, mousePressed(
) picks two more random colors, which
will be redrawn.

There are five places in the skeleton where
you will have to make modifications. The
first defines some float variables. The
other places need a random color, but to do
that you will need other lines of code.
(Note that the code you add for the random
coloring will be pretty much the same in
each of the four places.) If you need help figuring out what to add check the resources for
additional information.

To Turn In  
Put your name on your two screen shots and on your .pde file, and submit to the class
drop box.

Homework 6 Resource: Randomness

Random numbers should be called random number sequences, because the definition
requires that no matter how many numbers you already know in the sequence, it’s not
possible to predict the next one. A non-random sequence is 2, 4, 6, 8, 10, … Computers
cannot produce random numbers (because computers are completely predictable), but
they can produce a sequence of numbers that passes all of the tests for randomness. These
are called pseudo-random numbers, but everyone drops the “pseudo” part.

To generate a random number in Processing we write random(<smallest possible number>,
<largest possible number>). What we get back is some number – we can’t predict which –
between the two limits, including the end points. So, to generate a random number
between 0 and 255, write random(0, 255). To generate a number between 0 and 1, write
random(0, 1).

Homework 6 Resource: Variables and Their Data Types

Variables are names that can have values. For example, file names like term_paper.doc
are variables and the name’s value is the file; in this case, a Word document. The point
about variables – pay close attention – is that they vary. For example, every time you edit
the term_paper.doc file and save it, you’ve changed the value of the variable. This is
pretty natural. The other thing about variables is that they name a certain type of data; in
this case the name term_paper.doc names a Word document, which we know by the
“.doc” part. So, the basics are: Variables are names, they name values, they name a
specific kind of data value, and the values can be changed.

In programming, things are pretty much the same. Variables are names made out of
letters and numbers and underscores. The kind of information that variables name – the
data type is what computer people call it – is not expressed by the dot file extension
mechanism, but instead is declared using a program instruction. So, if I want three
variables that will name integer values, that is, whole numbers, then I write

int x, y, z;

The term int is short for integer and the x, y and z are the variables; I could have used any
other names, too. If I want variables that are decimal numbers, like 3.14, I write

float a, b, c;

The term float is very strange – it’s short for floating point – but we don’t need to
remember that at all; we will use float, however. These two programming commands are
called declarations, because they declare what type of data values the variables will
name. Notice that I have only specified what type of values they WILL have … at the
moment, they don’t have values.

As one more example, I mention the color data type, as in

color husky_gold, husky_purple;

Homework 6 Resource: Random Colors in Processing

Unlike ints and floats, the color data type is formed form three values corresponding to
the three RGB values. (There’s actually a fourth value, but lets forget that for now.) If I
think Husky Gold is defined by a red value of 224, a green value of 196, and a blue value
of 52, which I got from the Color Selector under the Processing Tools menu,

I write

husky_gold = color(224, 196, 52);

which says to the computer to pack up the three values into whatever form the color data
type has and make the result the value of the color variable husky_gold. Having the
variable with a color value allows me to write

fill(husky_gold);

to get a gold color filled in
shapes. See the program at right.

What’s happening is the function
color() packs the three values
together so that we can treat them
as a single thing. (We don’t need
a function to pack integers or
floats together because they are
already just a “single thing.”)

Combining the ideas of randomness and data types, I generate a random color with,

float r, g, b;
color any_color;

r = random(0, 255);
g = random(0, 255);
b = random(0, 255);

any_color = color(r, g, b);

The first two lines declare the variables, defining three float variables and one color
variable. The next three lines randomly choose values for the RGB positions. Finally, the
last line packages the three values into a color. When I used this for a background, I got
(by dumb luck) a color pretty close to husky gold! Each time I run this program, I get
some other background color.

A Color Tool 
There is a very interesting function called
lerpColor(). It uses a mathematical idea
(that we don’t need to know about) called
linear interpolation to pick intermediate
colors. What we do is give it two colors, say
husky_gold and husky_purple, and it
finds a color in between. Where in between?
We also give it a fraction between 0 and 1
that tells. So, look at my program at right,
modified from the Husky colors above. I
have filled in the black region in the middle
with two colors between gold and purple. On
the left I picked a color “close” to gold, which is 1/3 of the way between gold and purple,
and on the right, I picked a color “close” to purple, which is 2/3 of the way between the
two. It’s kind of attractive!

gold near_gold near_purple purple

