Reasoning Through Applications

CSE

100

Algorithm design, programming and problem solving usually require thinking and creativity, and they benefit from experience. But it is possible to approach these tasks to simplify the process of finding a solution. Today we work through a case.

* Algorithm design, programming, application development, etc. are intellectually tough ... why?
- There is no "cookbook solution" ... each case has its own logic and requires its own reasoning
- The solution must be exactly right in every detail
- The language used to express the solution (Basic) is new, strange and unforgiving
- The context -- Windows operating system, the VB6.0 development environment, the UW computing facilities -- is new and complicated
- The instructors present examples that are "all prepared" so you do not see the actual programming, thinking, debugging and mistakes they make

CSE
 100
 The Latte Problem

* Ken's example from yesterday's lab provides the topic for this exercise

Price a double, tall latte, please."

* Recall that the task is to figure the cost of a latte, given there is a base price for each size, extra cost for each shot of espresso and sales tax.

CSE
 100 Thinking About The Solution ...

The most common advice about programming is:
"Reason the solution through first, code it later"
\square It is very easy to be distracted by the mechanism of writing a program and the IDE

- Since the solution demands the reasoning effort no matter how you go about it -- reasoning before the coding or reasoning during the coding -- reasoning first allows you to think about the problem more abstractly

Think first, code later

CSE
 100 What's To Be Done?

* The very first step is to understand what is to be done
* Generally, this entails specifying the inputs, the outputs and the processing that gets from in to out

Task: Compute the price of a latte
The price is determined by three quantities:

+ Base price, given by the cup size
+ Number of shots of espresso
+ State sales tax
* Of these the coffee drinker specifies the first two, making them program inputs: size, shots
* The output is the price: price

CSE
 100 Further specification ...

- The size input is further specified to have three values: \quad Notice, size is different
+ Short with basePrice \$1.10
+ Tall with basePrice $\$ 1.50$ from basePrice, implying
+ Grande with basePrice $\$ 1.90$ basePrice is a necessary new variable
* The shots input is further specified to be any nonnegative number, i.e. 0 or more
+ The per shot price is $\$ 0.65$
: The sales tax input (fixed for the problem) is 8.6\%
* The price output is further specified to be
+ price $=$ basePrice + shots * $0.65+$ figureTax(subTotal)
Summary: The coffee drinker needs to give desired size and shots, and will receive back the displayed price.

CSE

100 Finding A Solution

* With the task defined and the Inputs/Outputs specified ... Decide how the task will be solved?
* The best advice is "Formulate a 'high level solution' and then refine each operation into simpler form."
* Solution considerations ...
+ There are two user inputs, size and shots, and they can be given in either order
+ The proper basePrice must be computed from size
+ The figureTax procedure is needed to compute the sales tax from the subTotal ... this is simply 0.086*subTotal
+ The subTotal, which is basePrice + shots* 0.65 , must be computed ... can be used in computing the price
+ The price must be computed ... subTotal + figureTax(subTotal)
+ The result must be displayed

CSE
 100 Consequences Of The Considerations

There are two user inputs, size and shots, and they can be given in either order

* When there are two (or more) inputs, it is necessary to postpone the computation until all inputs are available ... so to be notified when the input has been fully specified, use a button to command "calculate price now"
* The processing can be performed when the calcPrice button is clicked, so plan to put "processing" in the Sub calcPrice_Click()

CSE
 100 Consequences Of Considerations II

The proper basePrice must be computed from size

* size has three values -- short, tall, grande -- and these could be specified with option buttons, e.g. optShort, optTall, optGrande; shots is textbox
* The basePrice can be set with each button, or the size can be "captured" for processing later
* Either way, need global variable

Case 1: Set basePrice
Sub optShort_Click()
basePrice $=1.10$
End Sub

Case 2: Capture data
Sub optShort_Click() size = "short"
End Sub

If size = "short" Then basePrice = 1.10 If size = "tal"" Then

CSE
 100
 Consequence Of Considerations III

The figureTax procedure is needed to compute the sales tax from the subTotal ... this is simply $0.086 *$ subTotal

* The figureTax computation can be either a function or a procedure. Either way, it takes the subTotal as an actual parameter, and uses a formal parameter, say sT, in the definition Function figureTax (sT As Single) As Single figureTax = sT * 0.086 End Function
* If figureTax is a procedure it will also need a parameter, say tax, to pass the value back to the main program
* Or figure tax inline

```
Sub figureTax (sT, tax As Single, tax)
    tax = sT * 0.086
                                End Sub
```


CSE
 100 Consequences Of Considerations IV

The subTotal, which is basePrice + shots*0.65, must be computed ... can be used in computing the price The price must be computed ... subTotal + figureTax(subTotal)

* The simple solution is just to compute the subTotal and then add that into the price
subTotal = basePrice + shots*0.65
price $=$ subTotal + subTotal*0.086
The result must be displayed
* A label control, say lbIPrice, must be introduced and assigned the value computed for price

CSE
 100
 Ready To Code

* At this point we know what controls are needed -- 3 option buttons, text box, command button, label
* The variables needed -- subTotal, ... -- are known
\% The processing is known ...
+ Capture data at the option buttons
+ Figure result on command button
* The program can now be written, and tested interactively, as portions are finished
* Error checking and testing are needed, but they are topics for the future

cse
 100
 One Solution ... I

Every program makes a specific set of choices
Option Explicit
Dim size As String

Private Sub btnCalculatePrice_Click()
Dim shots As Integer
Dim price As Single
shots $=$ txtShots.Text
Call calcLattePrice (price, shots, size)
Call addSalesTax (price)
lblPrice.Caption = "\$" \& Round(price, 2) End Sub

CSE
 100

One Solution ... II

Every program makes a specific set of choices
Sub calcLattePrice (p As Single, sh As Integer, sz As String)
Dim basePrice, extraCharge As Single
If sz = "short" Then
basePrice $=1.1$
ElseIf sz = "tall" Then
basePrice $=1.5$
ElseIf sz = "grande" Then basePrice $=1.9$
End If
extraCharge $=0$
If $s h>1$ Then extraCharge $=(s h-1) * 0.65$
End If
p = basePrice + extraCharge
End Sub

CSE
 100 One Solution ... III

Every program makes a specific set of choices
Sub addSalesTax (p As Single)
$p=p+p$ * 0.086
End Sub
Private Sub optGrande_Click()
size = "grande"
End Sub
Private Sub optShort_Click()
size = "short"

End Sub
Private Sub optTall_Click()
size = "tall"
End
Sub

