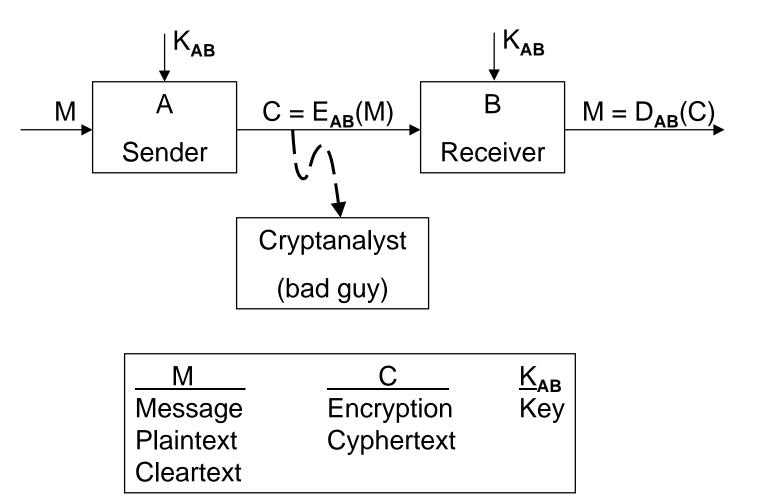
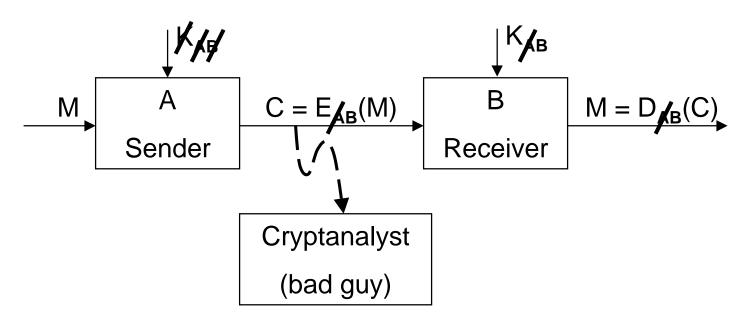
Guest Lecture

Professor Martin Tompa from the Computer Science and Engineering Department tells us about ...



Secret Codes, Unforgeable Signatures, and Coin Flipping on the Phone


A Secret Code

5815 Ann Arbor NE				524-3371
John R Dr 8001 Sand Point Way NE	SEATTLE	98103	206	523-8877 634-2368
Joe & Kelley 15114 SE 224th Kimberlie 5815 Ann Arbor NE	SEATTLE	98105	206	639-8073 524-0179
Steve & Christina 31500 1st Ave S	- FEDWY	98003	Contraction of the second second second	946-4303 352-1590
James 2008 SW 348th	FEDWY	98023 98125	253	838-3565 363-1482
GATES A 721 17th			206	323-3705
A & C Shoreline Abraham 820 NE 57th			206	729-1580 957-7398
Andrew R 14405 SE 15th Barron		8083	206	901-1947
Bertha 3014 NE 98th	SEATTLE	98115	206	729-0714

FIT What Is a Public Key Cryptosystem?

M	<u>C</u>	<u>К</u> в	<u>Е</u> в
Message	Encryption	Кеу	Public Key
Plaintext Cleartext	Cyphertext	Private Key	

FIT The RSA Public Key Cryptosystem

- Invented by Rivest, Shamir, and Adleman in 1977.
- Has proven resilient to all cryptanalytic attacks since.

Choose 500-digit primes p and q (each 2 more than a multiple of 3).

p = 5, q = 11

- Let n = pq. n = 55
- ★ Let s = (1/3) (2(p 1)(q 1) + 1). $s = (1/3) (2 \cdot 4 \cdot 10 + 1) = 27$
- ✤ Publish n.

Keep *p*, *q* and *s* secret.

- Break the message into chunks.
 HI CHRIS ...
- Translate each chunk into an integer M (0 < M < n).
 8 9 3 8 18 9 19 ...
- ◆ Divide M³ by n. E(M) is the remainder.
 M = 8, n = 55
 8³ = 512 = 9×55 + 17
 E(8) = 17

FIT Decrypting A Cyphertext C

Divide C^s by n. D(C) is the remainder.
 C = 17, n = 55, s = 27
 17²⁷ = 1,667,711,322,168,688,287,513,535,727,415,473
 = 30,322,024,039,430,696,136,609,740,498,463 × 55 + 8
 D(17) = 8

Translate D(C) into letters. H

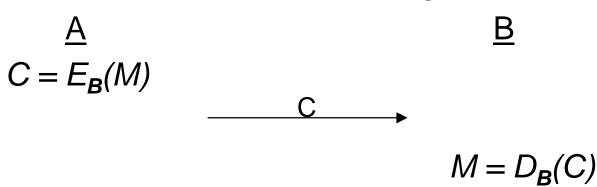
Euler's Theorem (1736): Suppose

- ✤ p and q are distinct primes,
- ♦ n = pq,
- ✤ 0 ≤ M < n, and</p>
- k > 0.

If $M^{k(p-1)(q-1)+1}$ is divided by *n*, the remainder is *M*.

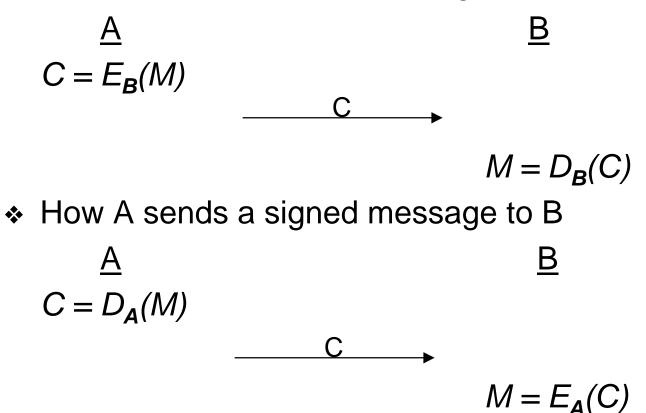
$$(M^3)^s = (M^3)^{(1/3)(2(p-1)(q-1)+1)}$$

= $M^{2(p-1)(q-1)+1}$

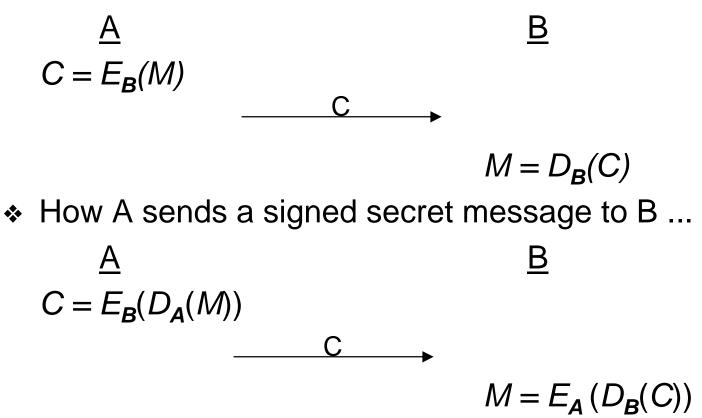

- ♦ To find M = D(C), you seem to need s.
- ✤ To find s, you seem to need p and q.
- ✤ All you have is n = pq.
- How hard is it to factor a 1000-digit number n? With the grade school method, doing 10,000,000 steps per second it would take ... 10⁴⁸⁵ years.

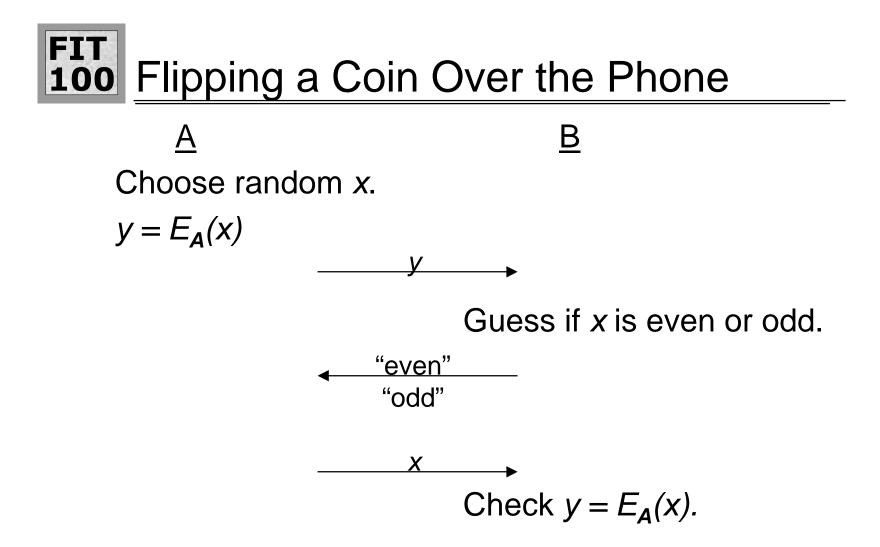
FIT 100 State of the Art in Factoring

- 1977: Inventors encrypt a challenge using "RSA129,"
 a 129-digit number n = pq.
- ✤ 1981: Pomerance invents a new factoring method.
- 1994: RSA129 factored over an 8 month period using 1000 computers on the Internet around the world.
- With this method, a 250-digit number would take 100,000,000 times as long.



How A sends a secret message to B


FIT 100 Signed Messages


How A sends a secret message to B

FIT 100 Signed and Secret Messages

✤ How A sends a secret message to B ...

✤ B wins if the guess about x was right