
),7
���

© Copyright, Larry Snyder, 1999

Iteration -- Once Is Not Enough

),7
���

),7
���

© Copyright, Larry Snyder, 1999

Congratulations!

❖ The Day Find project is done! -- Reflect
❖ This is a significant accomplishment

❏ Understand a fundamental algorithm -- binary search
❏ Know how to search “across a month boundary”
❏ Have encoded the solution in VB6, showing that you know

✛ Declarations and types
✛ Assignment and expressions
✛ Conditional control (If-Then-Else)
✛ Procedure definitions
✛ Procedure calls

❏ Getting it working shows skill in trouble shooting and
debugging

),7
���

© Copyright, Larry Snyder, 1999

Why Has It Been So Challenging?

❖ Algorithm design, programming, application
development, etc. are intellectually tough … why?

❏ There is no “cookbook solution” … each case has its own
logic and requires its own reasoning

❏ The solution must be exactly right in every detail
❏ The language used to express the solution (Basic) is new,

strange and unforgiving
❏ The context -- Windows operating system, the VB6.0

development environment, the UW computing facilities -- is
new and complicated

❏ The instructors present examples that are “all prepared” so
you do not see the actual programming, thinking, debugging
and mistakes they make

Learn by example and analogy

),7
���

© Copyright, Larry Snyder, 1999

Iteration -- Once Is Not Enough

Though people don’t like to repeat
themselves, repetition is a valuable facility
that a computer can provide. If program

instructions are to be performed more than
once, as in Alphabetize CDs, repetition is

needed

),7
���

),7
���

© Copyright, Larry Snyder, 1999

Two Additional Control Statements

❖ The conditional statement (If-Then-Else) is the only
way (so far) to control which statements are executed

❖ Two more are needed
❏ ElseIf -- a variation on the If-Then-Else for long sequences of

tests
❏ Do While -- a control facility allowing statements to be

repeated as long as some condition is true

Programming languages have other control
statements, but these are enough to do any
programming

),7
���

© Copyright, Larry Snyder, 1999

ElseIf

❖ ElseIf solves the problem of testing a long sequence
of alternatives

If <T/F condition> Then
 <statement list> Stmts for 1st cond
ElseIf <T/F condition> Then
 <statement list> Stmts for 2nd cond
ElseIf <T/F condition> Then
 <statement list> Stmts for 3rd cond
ElseIf <T/F condition> Then
 <statement list> Stmts for 4th cond
ElseIf <T/F condition> Then
 <statement list> Stmts for 5th cond
Else
 <statement list> Stmts for otherwise
EndIf

),7
���

© Copyright, Larry Snyder, 1999

Example

❖ If txtNum.Text = 1 Then
❖ MsgBox(“John”)
❖ ElseIf txtNum.Text = 2 Then
❖ MsgBox(“Paul”)
❖ ElseIf txtNum.Text = 3 Then
❖ MsgBox(“George”)
❖ ElseIf txtNum.Text = 4 Then
❖ MsgBox(“Ringo”)
❖ Else
❖ MsgBox(“Who?”)
❖ EndIf

Executed if Text = 1

Executed if Text ≠ 1 and Text = 2

Executed if Text ≠ 1 or 2 and Text = 3

Executed if Text ≠ 1 or 2 or 3 and Text = 4

),7
���

© Copyright, Larry Snyder, 1999

Contrast With Nested If
❖ ElseIf is not a nested test as seen before, though it is

similar

If txtNum.Text = 1 Then
 MsgBox(“John”)
ElseIf txtNum.Text = 2 Then
 MsgBox(“Paul”)
ElseIf txtNum.Text = 3 Then
 MsgBox(“George”)
ElseIf txtNum.Text = 4 Then
 MsgBox(“Ringo”)
Else
 MsgBox(“Who?”)
End If

If txtNum.Text = 1 Then
 MsgBox(“John”)
Else
 If txtNum.Text = 2 Then
 MsgBox(“Paul”)
 Else
 If txtNum.Text = 3 Then
 MsgBox(“George”)
 Else
 If txtNum.Text = 4 Then
 MsgBox(“Ringo”)
 Else
 MsgBox(“Who?”)
 End If
 End If
 End If
End If

),7
���

© Copyright, Larry Snyder, 1999

Caution With Else If

❖ An If statement that uses Else If passes through all of
the previous cases before reaching a given test …
think about the consequences

If someVar < 20 Then
 MsgBox(“Less than 20”)
ElseIf someVar < 10 Then
 MsgBox(“Less than 10”)
Else
 ...
EndIf

Will this MsgBox ever be
executed?

),7
���

© Copyright, Larry Snyder, 1999

Repeating Terms

❖ Iteration is the repeated execution of a series of
statements in programming

❖ To perform iteration, programming languages include
special statements often called iteration statements

❖ There are two crucial components of all iterations:
❏ The statements that will be repeated -- called the loop body
❏ A test specifying when to repetition stops -- termination test

❖ Additionally, loops typically have at least one variable
that is explicitly changed “inside” the loop -- this is
called the iteration variable

Some value must change between consecutive iterations,
or else the loop will never terminate … it is an infinite loop

),7
���

© Copyright, Larry Snyder, 1999

General Form Of VB6 Iteration

❖ VB6, like most languages, has several iteration
statements, but only one form is of interest here

❖ The semantics are as follows:
❏ The termination condition is tested and if it is false the

statements are all skipped; execution continues after Loop
❏ If it is true, the statements are performed once
❏ The termination condition is tested again, and if it is false the

loop is over and the statements are skipped; continue after Loop
❏ If it is true, the statements are performed a second time
❏ …

Do While <termination condition>
 <statements>
Loop

),7
���

© Copyright, Larry Snyder, 1999

An Example

❖ An easy way to get the idea of iteration is to print out
the iteration variable ...

Option Explicit

Private Sub Form_Click()
Dim iterateVar As Integer
 iterateVar = 0
 Do While iterateVar < 10
 iterateVar = iterateVar + 1
 Print (“iterateVar is” & iterateVar)
 Loop
End Sub

Declaration of iteration variable

Initialization of iteration variable

Termination Condition

Loop Body
Increment of the
iteration variable

),7
���

© Copyright, Larry Snyder, 1999

Execution of Example

❖ Try the same computation with a different termination
condition

