
),7
���

© Copyright, Larry Snyder, 1999

When Trouble Comes:
The Basics of Debugging

No one is capable of writing a flawless program of
more than several lines on the first try. Therefore,

algorithm design, programming and any other logical
activity will require debugging or trouble shooting.
Though debugging is very case-specific, there are

some principles.

),7
���

),7
���

© Copyright, Larry Snyder, 1999

Bugs vs Faults
❖ When the car doesn’t start because of a dead

battery, figuring out the problem uses debugging
skills … but it is not technically debugging, but rather
“fault identification”

❏ When the error is a failing component of a correct design, it
is a fault … when the battery is fixed the car runs

❏ When the error is a failure of the design, it is a bug

❖ While programming the chances are overwhelming
that the error is a bug, since you’ve likely made a
reasoning error

❖ In “mature” systems it could be either one since the
error could be a fault or a latent logical error

It is impossible to say that a program is perfectly correct

),7
���

© Copyright, Larry Snyder, 1999

The First Computer Bug Was A Moth

❖ The term “bug” for a computer glitch was coined by
Adm. Grace Murray Hopper when working on the
Harvard Mark II computer

The moth was found in Relay #70 -- an electro-
mechanical switch -- and taped into the logbook with
the caption “First actual case of a bug being found”

),7
���

© Copyright, Larry Snyder, 1999

A Word Of Warning ...

❖ Sometimes when solving a problem, it is tempting to
skip working out all of the logical details and go
directly to the programming ⇒0,67$.(⇐

❖ Sometimes when programming, it is tempting to skip
working out all of the logical details and plan to “fix
them up” when debugging ⇒0,67$.(⇐

There is no substitute for reasoning
in algorithm or program design; it
must be done eventually, and it is
always easier earlier in the process

),7
���

© Copyright, Larry Snyder, 1999

When Debugging, Think Abstractly
❖ Debugging is like solving a mystery … except you

don’t want to know who dunit, so much as what dunit
❖ An effective way to proceed is to …

❖ Think about what you know … the facts
❖ Consider what should be true … the assumptions
❖ Formulate a test hypothesis … gather evidence
❖ Work intelligently … assess if you’re making progress

Watch yourself debug

Though debugging can be frustrating, many times
the “solving a mystery” aspect of it is rewarding.

),7
���

© Copyright, Larry Snyder, 1999

Guidelines For Debugging

❖ There is no recipe for successful debugging because
every situation is different … but there are guidelines

1. Verify that the error is reproducible, i.e. make it
happen again

❏ “Transient errors” can occur
❏ The error may have been caused by a state or configuration

that was unknowingly set … get a “clean” instance of the bug

❏ When reproducing the error, try to formulate a “minimal”
version of the system or program with the bug

),7
���

© Copyright, Larry Snyder, 1999

Guidelines -- Check obvious
2. Check for the “obvious” problems

❏ Verify that the inputs are as required -- case, syntax, etc.
✛ Are there 0-O 1-l I-l or other substitution mistakes

❏ If there are multiple components or files in the buggy system,
establish that these are properly “connected”

❏ Has anything been changed recently
❏ When there are multiple inputs, does the order matter
❏ In programming, are all variables ...

✛ Declared
✛ Initialized

The chances that the problem is something “obvious”
are small because if it were so “obvious” you would
have already found the problem … but you must check

),7
���

© Copyright, Larry Snyder, 1999

Guidelines -- Isolate error
3. Isolate the problem -- since the error is likely located

in a specific place in the system or program, large
sections of it are correct and should be removed from
consideration

❏ Isolating the problem to a specific procedure is best
❏ Verifying that parts thought to be correct are correct is

essential
❏ It is even possible to use binary search ... Command 1

Command 2
...
Command n/2
...
Command n-1
Command n

Check if erroneous
results have been
produced here

program
 execution

),7
���

© Copyright, Larry Snyder, 1999

Guidelines -- Step through process

4. Once the error is isolated, reason through the
process start-to-finish, predicting what should be
computed and then verifying that it has been

❏ When a prediction is inconsistent with an observation, the
problem has been further isolated to the current step

✛ The process was OK prior to this step
✛ The process is incorrect after this step

❏ Check the inputs and reason through the step
❏ If bug not found, continue applying the guidelines

),7
���

© Copyright, Larry Snyder, 1999

Guidelines -- Assess Objectively

5. It frequently occurs that everything checks out and is
found to be OK … but the bug still persists

Don’t become frustrated. Rather, evaluate your
progress objectively ... how are you doing

❏ Are you making a wrong assumption
❏ Do you misunderstand what the data means
❏ Have you made a wrong deduction

Remember … it’s a mystery and you are Jane
Marple or Hercule Poirot … using those “little
gray cells” you can find the culprit

),7
���

© Copyright, Larry Snyder, 1999

VB6 Assistance in Debugging

❖ Visual Basic assists you in avoiding bugs (Option
Explicit) and in finding bugs with breakpoints

❖ A breakpoint stops the program execution at a
designated location so you can examine the
variable’s values

Demo of Breakpoints

