
),7
���

© Copyright, Larry Snyder, 1999

Procedural Basics

Procedures encapsulate useful computation
in a form that can be reused. In this regard
they extend the capability of the computer

since the procedure can be used as if it were
a primitive instruction.

),7
���

),7
���

© Copyright, Larry Snyder, 1999

A Scenario: Reading Email

❖ You are reading email and your friend living outside
the US says the temperature is 38o

❖ That’s Celsius, of course. What is it in Fahrenheit? Is
it hot or cold, you wonder. Why doesn’t your
computer have a Celsius-to-Fahrenheit converter?

❖ This situation arises all of the time … there are many
things a computer could do for you, but the software
is not available

❏ You can step through the process yourself, i.e. convert to C
❏ But what you’d like is to solve the problem once-and-for-all

and have the solution packaged-up to be always available

❖ What you want is a procedure

),7
���

© Copyright, Larry Snyder, 1999

The Idea of Procedures

❖ Procedures encapsulate computation for general
application

❏ A procedure’s operation should be hidden from view
❏ It must be possible to give data to a procedure and get

results back from the procedure
❏ All of the possible eventualities must be considered

❖ The procedure concept has two parts:
❏ A procedure “declaration” -- defines how computation goes
❏ Many procedure “calls” -- requests to have the procedure

performed

The fundamental idea of procedures: Whenever
the procedure is called, “substitute” its definition

),7
���

© Copyright, Larry Snyder, 1999

Anatomy Of A Procedure

❖ Procedures have the following features
❏ Name, a brief description of operation performed
❏ Parameters, variables used for passing input in, output out
❏ Body, the statements that perform the desired computation

❖ The VB6 procedure to convert Celsius to Fahrenheit
❏ Name is C2F
❏ Parameter -- both input and output -- temp
❏ Body is standard conversion equation
❏ Blue -- key words and

and symbols that are
required

Private Sub C2F (temp As Integer)
temp = 9 * temp / 5 + 32

End Sub

),7
���

© Copyright, Larry Snyder, 1999

Tale Of Two Contexts
❖ There is a calling context that is suspended when a

procedure is called and the procedure context that
comes into existence on the call, and vanishes on
completion when the calling context is resumed

…
Sydney_temp = 38
Call C2F(Sydney_temp)
Suspend calling context

Resume calling context
Msgbox(“Temp is ”

 & Sydney_temp)

...

Create procedure context
Private Sub C2F (temp As Integer)

temp = 9 * temp / 5 + 32
End Sub
Delete procedure context

⇐Calling Context Procedure Context⇒

),7
���

© Copyright, Larry Snyder, 1999

A Guessing Game
❖ Develop a program to guess a person’s weight

❏ It starts with a guess of 0 and always stays below the correct
answer

❏ A weight guess is formulated as: loSide + increment
❏ Questions are asked in increments of 100, then 10, then 1

),7
���

© Copyright, Larry Snyder, 1999

Operation ...

),7
���

© Copyright, Larry Snyder, 1999

Braining Out The Logic

❖ When will guesses be made?
❏ Initially, when the program begins (called form_load)

❏ In response to a Yes answer
❏ In response to a No answer

❖ In addition to the first guess what happens at start
❏ Initialize loSide = 0

increment = 100

❖ In addition to a guess, what happens on a Yes?
❏ Add-in increment, as weight is more than loSide + inc

❖ In addition to a guess, what happens on a No?
❏ Reduce the increment by dividing by 10
❏ Check if the increment is below 1 … that’ll be the answer

),7
���

© Copyright, Larry Snyder, 1999

Including A Procedure

❖ The fact that a guess must be made in three places is
motivation to define a procedure to make the guess
(despite the fact that it is a trivial computation)

Option Explicit
Dim loSide As Integer
Dim increment As Integer

Private Sub guess()
 lblGuess.Caption = loSide + increment
End Sub

Private Sub Form_Load()
 increment = 100
 loSide = 0
 Call guess
End Sub

lblGuess.Caption = loSide + increment

),7
���

© Copyright, Larry Snyder, 1999

The Yes/No Logic

Private Sub cmdYes_Click()
 loSide = loSide + increment
 Call guess
End Sub

Private Sub cmdNo_Click()
 increment = increment \ 10
 If increment < 1 Then
 lblHead.Caption = "You Weigh Exactly ..."
 lblPound.Caption = "lbs!"
 Else
 Call guess
 End If
End Sub

❖ The “Yes” logic only adds-in, but the “No” logic reduces
the increment and must also test for completion

lblGuess.Caption = loSide + increment

lblGuess.Caption = loSide + increment

),7
���

© Copyright, Larry Snyder, 1999

Procedural Abstraction

❖ Whenever the same operations are performed in
different places in a program, there is an opportunity
for procedural abstraction

❖ Procedural abstraction gives a name to the operations
❖ It also encapsulates the operations so they can be

executed out-of-view, receiving input via parameters
and influencing the calling environment only by the
result(s) returned

