

- Informatics major
 - Information session tomorrow
 - 12:30-1:30 in MGH 420
 - Informatics video

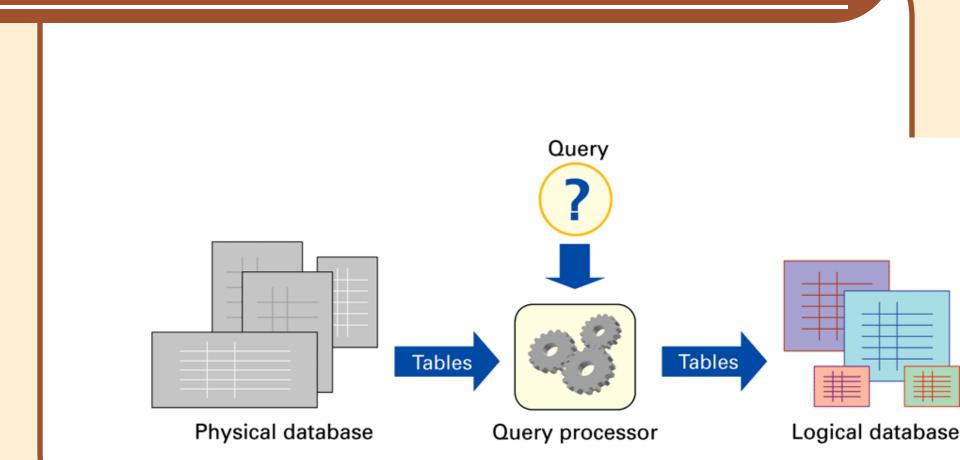
• Due Friday at 10pm

- Vote for the Best GoPosters WebQ
 - 5 points XC for everyone who answers
 - Ten winners will also receive 10-40 points XC
- Weekly GoPost discussion

Quiz in lab on Wednesday/Thursday

Topics on GoPost

D.A. Clements


Physical and Logical Database TABLES AND VIEWS

- Physical database and logical database
 - Physical database is the files, records in any order, no logical organization other than tables
 - Logical database is a view of database that shows only the rows and fields needed by the users
 - Solves Information Overload and Security:
 - Users see only what they need
 - Users see only what they have permission to see

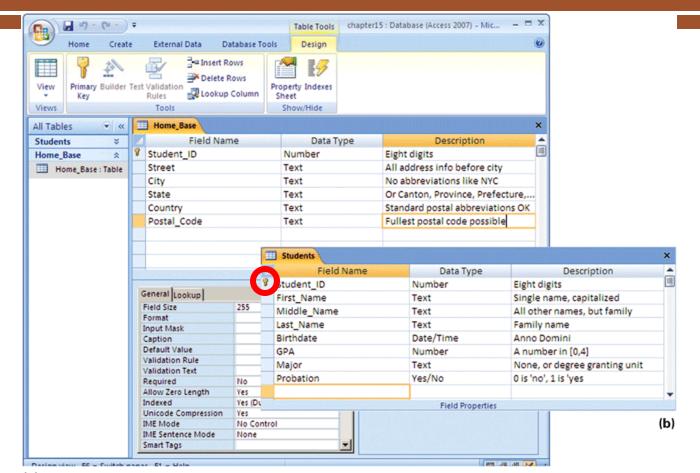
12/11/2009

Figure 16.15 Structure of a database system. The physical database is the permanent repository of the data; the logical database, or view of the database, is the form of the database the users see. The transformation is implemented by the query processor, and is based on queries that define the logical database tables from the physical database tables.

Designed by database administrators Fast to access

- No redundancy/duplicating information
 - Multiple data can lead to inconsistent data
- Backup copies in case of accidental data deletion or disk crash

- Creating specialized views of the data for different users' needs
 - Creating a new "result set" from the current data each time
 - Fresh
 - Accurate

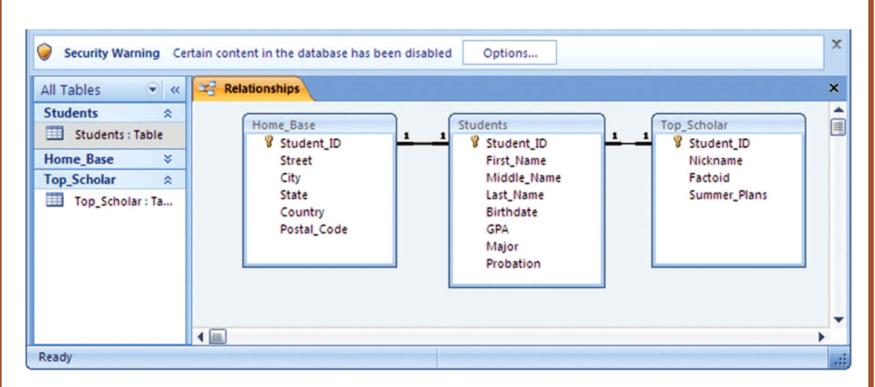

Opening Physical Tables

- Database schemes (schema)
 - Metadata specification that describes the database design

D.A. Clements, MLIS, UW iSchool

(a)

Figure 16.16 Table declarations from Microsoft Access 2007: (a) Home_Base table declaration shown in the design view; and (b) students table declaration. Notice that the key is specified by the tiny key next to Student_ID in the first column.


12/11/2009

D.A. Clements, MLIS, UW iSchool

C The Idea of Relationship

- A relationship is a correspondence between rows of one table and the rows of another table
 - key Student_ID is used in each table,
 - Find address for each student (*Lives_At*)
 - Find the student for each address (Home_Of)
- Relationship examples

ORelationships in Practice

Figure 16.17 The *Relationships* window from the Microsoft Access database system; the 1-to-1 *Lives_At* and *Home_Of* relationships are shown between Home_Base and Students.

Openational Contraction Contra

Constructing a View Using Join
 Match on the common field of Student_ID
 Master_List = Student JOIN Home_Base
 On Student.Student_ID = Home_Base.Student_ID

Student_ID
First_Name
Aiddle_Name
Last_Name
Birthdate
On_Probation
Street_Address
City
State
Country
Postal_Code


12/11/2009

Figure 16.18 Attributes of the Master_List table. Being created from Student and Home Base allows Master_List to inherit its data types and key (Student_ID) from the component tables.

15 min.

Hands on in Access and on paper

"Business Rules"

- What the database is about
- What things are important
- How things relate

O Athletes and Teams

- A Database for an athletics department at a high school
- Storing details of:
 - Teams with
 - division,
 - gender,
 - coach
 - Student Athletes

- Individuals are selected for a team.
- Keep track of the points awarded to each student for participating in a sport for the awarding of school letters.
- The Database has to keep track of student Athletes over five years with any given Athlete participating in multiple sports in a given year.

- THINGS of Interest,
 These THINGS are include :
 - Athletes
 - Events
 - Points earned for SUCCESS
 - Teams

- related as follows:
 - A Student Athlete can participate in zero, one or many TEAMS.

O Athletes and Teams

student_id student_result_at_event student_points_to_date student_points_at_event student_first_name letters_sport_code student_middle_name letters_awarded_date student_last_name team_gender student_date_of_birth event_location

team_name student_gender team_description student_address coach_name student_other_details team_other_details division_description sport_description event_name event_start_date event_end_date event_other_details

Obesign the Database

- Divide into teams of three or four:
 - Design the Students and Teams database:
 - Decide what tables you would build.
 - Decide what fields you would put in each table.
 - List table names and attributes.
 - Choose primary keys.
 - List foreign keys in the foreign table.

• You have 15 minutes