
5/10/06 fit100-19-review © 2006 University of Washington 1

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Midterm 2 Review

INFO/CSE 100, Spring 2006
Fluency in Information Technology

http://www.cs.washington.edu/100

5/10/06 fit100-19-review © 2006 University of Washington 2

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Readings and References

• Reading
» Fluency with Information Technology

• Chapters 9, 11 18-21

5/10/06 fit100-19-review © 2006 University of Washington 3

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Overview

• During this quarter, we're looking at the
actual workings of computer systems

• Organized as “layers of abstraction”
» application programs
» higher level languages: Javascript, SQL, …
» operating system concepts
» bits, bytes, assembly language
» transistors, electrons, photons

5/10/06 fit100-19-review © 2006 University of Washington 4

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Layers of Abstraction

• At any level of abstraction, there are
» elements at that level
» the building blocks for those elements

• Abstraction
» isolates a layer from changes in the layer

below
» improves developer productivity by reducing

detail needed to accomplish a task
» helps define a single architecture that can be

implemented with more than one organization

5/10/06 fit100-19-review © 2006 University of Washington 5

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Architecture & Organization

• Architecture (the logical definition)
» defines elements and interfaces between layers
» Instruction Set Architecture

• instructions, registers, addressing

• Organization (the physical implementation)
» components and connections
» how instructions are implemented in hardware
» many different organizations can implement a

single architecture

5/10/06 fit100-19-review © 2006 University of Washington 6

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Computer Architecture

• Specification of how to program a specific computer
family
» what instructions are available?
» how are the instructions formatted into bits?
» how many registers and what is their function?
» how is memory addressed?

• Some examples architectures
» IBM 360, 370, …
» PowerPC 601, 603, G5, …
» Intel x86 286, 386, 486, Pentium, …
» MIPS R2000, R3000, R4000, R5000, ...

5/10/06 fit100-19-review © 2006 University of Washington 7

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Computer Organization

• Processor
» Data path (ALU) manipulate the bits
» The control controls the manipulation

• Memory
» cache memory - smaller, higher speed
» main memory - larger, slower speed

• Input / Output
» interface to the rest of the world

5/10/06 fit100-19-review © 2006 University of Washington 8

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

A Typical Organization

main
memory

I/O bus

network
interface

hard
disk

floppy
disk

CDROM
drive

serial
ports

processorprocessor/memory bus

5/10/06 fit100-19-review © 2006 University of Washington 9

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Memory Output

ALU Control Input

Mouse
Keyboard
Scanner

Hard Disk
Floppy Disk

Monitor
Printer
Speakers

Anatomy of a Computer

Processor

5/10/06 fit100-19-review © 2006 University of Washington 10

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Fetch/Execute Cycle

Instruction Fetch (IF)
Instruction Decode (ID)
Data Fetch (DF)
Instruction Execution (EX)
Result Return (RR)

Computer = instruction execution engine
» The fetch/execute cycle is the process that

executes instructions

5/10/06 fit100-19-review © 2006 University of Washington 11

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

0

G
1

o
2

D
3

a
4

w
5

g
6

s
7

!
8

!
9

0
10

...
11

0
byte=8 bits

1 0 0 0 1 0 0

memory addresses
Memory locations

memory contents

Memory ...

Programs and the data they operate on must be
in the memory while they are running

5/10/06 fit100-19-review © 2006 University of Washington 12

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

6
10

11

12

13

14

15

12
16 17 18 19

18
20

...
21

Control
• The Fetch/Execute cycle is hardwired into the computer’s

control, i.e. it is the actual “engine”
• Depending on the Instruction Set Architecture, the instructions

say things like
» Put in memory location 20 the contents of memory location 10 +

contents of memory location 16
» The instructions executed have the form ADDB 10, 16, 20

• Add the bytes from memory address 10 and memory address 16 and
store the result in memory address 20

5/10/06 fit100-19-review © 2006 University of Washington 13

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

ALU

Most computers have only about a 100-150 instructions hard wired

Depending on the Instruction Set Architecture, each type of
data has its own separate instructions

ADDB : add bytes ADDBU : add bytes unsigned
ADDH : add half words ADDHU : add halves unsigned
ADD : add words ADDU : add words unsigned
ADDS : add short decimal numbers
ADDD : add long decimal numbers

The Arithmetic/Logic Unit does the actual
computation

5/10/06 fit100-19-review © 2006 University of Washington 14

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Input/Output

• Input units bring data to memory from outside
world; output units send data to outside world
from memory
» Most peripheral devices are “dumb”, meaning

that the processor assists in their operation

5/10/06 fit100-19-review © 2006 University of Washington 15

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

112

113

114

115 116 117 118 119 120

...
121

ADD 210,216,220 AND 414,418,720

Program Counter: 112

OR

The PC’s PC
• The program counter (PC) tells where the next

instruction comes from
» In some architectures, instructions are always 4

bytes long, so add 4 to the PC to find the next
instruction

5/10/06 fit100-19-review © 2006 University of Washington 16

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Clock rate is not a good indicator of speed anymore,
because several things are happening every clock cycle

Clocks Run The Engine
• The rate that a computer “spins around” the

Fetch/Execute cycle is controlled by its clock
» Current clocks run 2-3 GHz
» The computer tries do at least one instruction per

cycle, depending on the instruction and the
availability of memory contents

» Modern processors often try to do more than one
instruction per cycle

5/10/06 fit100-19-review © 2006 University of Washington 17

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Algorithm

• Algorithm
» a precise, systematic method to produce a desired result

• For example, the placeholder technique for
deleting a short string except where it occurs in
longer strings is an algorithm with an easy
specification:

longStringWithShortStringInIt ← placeholder
ShortString ← e
placeholder ← longStringWithShortStringInIt

5/10/06 fit100-19-review © 2006 University of Washington 18

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Programs vs Algorithms
• A program is an algorithm specialized to a

particular situation
» an Algorithm

longStringWithShortStringInIt ← placeholder
ShortString ← e
placeholder ← longStringWithShortStringInIt

» a Program that implements the Algorithm
↵↵ ← # // replace double <newlines> with <#>
↵ ← e // delete all single < newlines>
← ↵↵ // restore all double <newlines>

5/10/06 fit100-19-review © 2006 University of Washington 19

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

What the heck is the DOM?

• Document Object Model
» Your web browser builds a model of the web

page (the document) that includes all the
objects in the page (tags, text, etc)

» All of the properties, methods, and events
available to the web developer for manipulating
and creating web pages are organized into
objects

» Those objects are accessible via scripting
languages in modern web browsers

<html>
 <head>
 <title>Sample DOM Document</title>
 </head>
 <body>
 <h1>An HTML Document</h1>
 <p>This is a <i>simple</i> document.
 </body>
</html>

This is what the browser reads (sampleDOM.html).

This is what the browser displays on screen.

Document

<html>

<head>

<title>

"Sample DOM Document"

<body>

<h1> <p>

"An HTML Document"

"This is a"

"simple"

<i> "document"

Figure 17-1. The tree representation of an HTML document
Copied from JavaScript by Flanagan.

This is a drawing of the model that the
browser is working with for the page.

5/10/06 fit100-19-review © 2006 University of Washington 22

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

document.getElementById("radioLC").checked

• Reference to several nodes in the model of the page that the
browser constructed

• document
» The root of the tree is an object of type HTMLDocument
» Using the global variable document, we can access all the nodes in

the tree, as well as useful functions and other global information
• title, referrer, domain, URL, body, images, links, forms, ...
• open, write, close, getElementById, ...

5/10/06 fit100-19-review © 2006 University of Washington 23

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

document.getElementById("radioLC").checked

• getElementById("radioLC")

» This is a predefined function that makes use of
the id that can be defined for any element in
the page

» An id must be unique in the page, so only one
element is ever returned by this function

» The argument to getElementById specifies
which element is being requested

5/10/06 fit100-19-review © 2006 University of Washington 24

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

document.getElementById("radioLC").checked

• checked

» This is a particular property of the node we are
looking at, in this case, a radio button

» Each type of node has its own set of properties
• for radio button: checked, name, ...
• refer to the HTML DOM for specifics for each

element type
» Some properties can be both read and set

5/10/06 fit100-19-review © 2006 University of Washington 25

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Representing Data as Symbols

• 24 Greek Letters
• And we decide to use 2 symbols, binary, to

represent the data.
• How many bits do we need?!?

» 24 total possibilities
» 2x2x2x2x2 = 25 = 32

• We get 6 extra!

5/10/06 fit100-19-review © 2006 University of Washington 26

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Info Representation

• Adult humans have 32 teeth
» sometimes a tooth or two is missing!

• How can we represent a set of teeth?
» How many different items of information?

• 2 items - tooth or no tooth
» How many "digits" or positions to use?

• 32 positions - one per tooth socket

» Choose a set of symbols
no tooth: 0 tooth: 1

5/10/06 fit100-19-review © 2006 University of Washington 27

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

What's your tooth number?

0 0

incisors canines pre-molars molars

1 0 0 0 0 0 0 0 0 0 0 0 0

no teeth ↔ 0000 0000 0000 0000 0000 0000 0000 0000

no molars ↔ 1111 1111 1111 1111 1111 0000 0000 0000

How many possible combinations? 2×2×2×2×...×2 = 232 ≈ 4 Billion

5/10/06 fit100-19-review © 2006 University of Washington 28

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

How many positions should we use?

0
1

one
position

It depends: how many numbers do we need?

two numbers
0
1

two
positions

four numbers

0
0

0
1

1
1

0
1

three
positions

eight numbers

0
0

0
1

1
1

0
1

0
0

0
1

1
1

0
0
0
0
1
1
1
1

5/10/06 fit100-19-review © 2006 University of Washington 29

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Converting from binary to decimal

Each position represents one more multiplication by the base value.

For binary numbers, the base value is 2, so each new column
represents a multiplication by 2.

1
20 = 1

2
21 = 2

2×2
22 = 4

1

2×2×2
23 = 8

0 1 0
base 2

2×2×2×2
24 = 16

25 = 32

26 = 64

1

27 = 128

0 0 0

base 10

!

1"128 + 0 " 64 + 0 " 32 +1" 8 + 0 " 4 +1" 2 + 0 "1=138
10

!

1"128 +1" 8 +1" 2 =138
10

5/10/06 fit100-19-review © 2006 University of Washington 30

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Base 16 Hexadecimal

• The base value can be 16 - hexadecimal numbers
» Sixteen symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
» Each column represents a multiplication by sixteen
» Hex is easier to use than binary because the numbers are

shorter even though they represent the same value

1
160 = 1

16
161 = 16

16×16
162 = 256

0

16×16×16
163 = 4096

0 8 A

base 10

base 16

10
138110168 =!+!

5/10/06 fit100-19-review © 2006 University of Washington 31

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Four binary bits ⇔ One hex digit

0
1

0
0

0
1

1
1

0
1

0
0

0
1

1
1

0
0
0
0
1
1
1
1

binary
base 2

hexdecimal
base 16

0
1
2
3
4
5
6
7

⇔

0
0
0
0
0
0
0
0

0
1

0
0

0
1

1
1

0
1

0
0

0
1

1
1

0
0
0
0
1
1
1
1

binary
base 2

hexdecimal
base 16

8
9
A
B
C
D
E
F

⇔

1
1
1
1
1
1
1
1

decimal
base 10

0
1
2
3
4
5
6
7

⇔

decimal
base 10

8
9

10
11
12
13
14
15

⇔

5/10/06 fit100-19-review © 2006 University of Washington 32

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Binary to Hex examples
0001 0100 0000 1110 0101 1000 0000 1111 base 2

F01A7028
base 16

100000100000011110100001000011112 = 8207A10F16

0001 1100 0010 1010 0110 1001 1101 0111 base 2

100000110100010101101001101111102 = ———————16

5/10/06 fit100-19-review © 2006 University of Washington 33

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Represent Text - ASCII

• Assign a unique number to each character
» 7-bit ASCII

• Range is 0 to 127 giving 128 possible values
• There are 95 printable characters
• There are 33 control codes like tab and carriage

return

im
ag

ei
s

 fr
om

 W
ik

ip
ed

ia

ASCII text

5/10/06 fit100-19-review © 2006 University of Washington 35

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Represent Text - Unicode
• The goal of Unicode is to provide the means to encode the

text of every document people want to store in computers
• Unicode aims to provide a unique number for each letter,

without regard to typographic variations used by printers
• Unicode encodes each character in a number

» the number can be 7, 8, 16, or 32 bits long
» 16-bit encoding is common today

5/10/06 fit100-19-review © 2006 University of Washington 37

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Represent Text - Postscript

• Postscript is a page description language
somewhat like HTML
» The file is mostly text and can be looked at

with a regular text editor
» programs that know what it is can interpret the

embedded commands
» Programs and printers that understand

Postscript format can display complex text and
graphical images in a standard fashion

5/10/06 fit100-19-review © 2006 University of Washington 39

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Represent Text - PDF

• PDF is another page description language
based on Postscript

• The file is mostly text
» can be looked at with a regular text editor
» programs that know what it is can interpret

the embedded commands
» just like Postscript and HTML in that respect

5/10/06 fit100-19-review © 2006 University of Washington 41

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Represent Color - Bit Map

• Numbers can represent anything we want
• Recall that we can represent colors with

three values
» Red, Green, Blue brightness values

• There are numerous formats for image files
» All of them store some sort of numeric

representation of the brightness of each color at
each pixel of the image

» commonly use 0 to 255 range (or 0 to FF16)

5/10/06 fit100-19-review © 2006 University of Washington 43

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

What about "continuous" signals?

• Color and sound are natural quantities that
don't come in nice discrete numeric
quantities

• But we can “make it so!”

5/10/06 fit100-19-review © 2006 University of Washington 44

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Digitized image contains color data

And much, much more!

5/10/06 fit100-19-review © 2006 University of Washington 46

Th
e

In
fo

rm
at

io
n

Sc
ho

ol
 o

f t
he

 U
ni

ve
rs

ity
 o

f W
as

hi
ng

to
n

Summary

• Bits can represent any information
» Discrete information is directly encoded using

binary
» Continuous information is made discrete

• We can look at the bits in different ways
» The format guides us in how to interpret it
» Different interpretations let us work with the

data in different ways

