Readings and References

- Reading
» Fluency with Information Technology
- Chapter 11, Representing Multimedia Digitally
- Wikipedia - The Free Encyclopedia
» Arabic numerals, ASCII
- http://en.wikipedia.org/wiki/Arabic_numerals
- http://en.wikipedia.org/wiki/Ascii
- Cyrillic Text
- http://www.dimka.com/ru/cyrillic/

Info Representation

- Adult humans have 32 teeth
» sometimes a tooth or two is missing!
- How can we represent a set of teeth?
» How many different items of information?
- 2 items - tooth or no tooth
» How many "digits" or positions to use?
- 32 positions - one per tooth socket
» Choose a set of symbols
no tooth: 0 tooth: 1

What's your tooth number?

no teeth $\leftrightarrow 00000000000000000000000000000000$

no molars $\leftrightarrow 11111111111111111111000000000000$

How many possible combinations? $2 \times 2 \times 2 \times 2 \times \ldots \times 2=2^{32} \approx 4$ Billion

Info Representation

- Color monitors combine light from Red, Green, and Blue phosphors to show us colors
- How can we represent a particular color?
» How many different items of information?
- 256 items - distinguish 256 levels of brightness
» How many "digits" or positions to use?
- 3 positions - one Red, one Green, one Blue
» Choose a set of symbols brightness level represented by the numbers 0 to 255

What is the pixel's color?

How can we store numbers?

- We want to store numbers
» 0 to 255 for color brightness
» 0 to 4B for tooth configuration
» 0 to 255 for ASCII character codes
- What do we have available in memory?
» Binary digits
- 0 or 1
- on or off
- clockwise or counter-clockwise

The hardware is binary

- 0 and 1 are the only symbols the computer can actually store directly in memory
" a single bit is either off or on
- How many numbers can we represent with 0 and 1 ?
» How many different items of information?
- 2 items - off or on
» How many "digits" or positions to use?
- let's think about that on the next slide
» Choose a set of symbols
- already chosen: 0 and 1

How many positions should we use?

It depends: how many numbers do we need?

```
one
position
```


two
positions
$\left.\begin{array}{l|l|}\hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ \hline\end{array}\right\}$ four numbers
three
positions
$\left.\begin{array}{|l|l|l|}\hline 0 & 0 & 0 \\ \hline 0 & 0 & 1 \\ \hline 0 & 1 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 0 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \hline 1 & 1 & 1 \\ \hline\end{array}\right\}$ eight numbers

The sky's the limit

- We can get as many numbers as we need by allocating enough positions
» each additional position means that we get twice as many values because we can represent two numbers in each position » these are base 2 or binary numbers
- each position can represent two different values
- How many different numbers can we represent in base 2 using 4 positions?

How can we read binary numbers?

Let's look at the equivalent decimal (ie, base 10) numbers.

binary	decimal
base 2	base 10

binary base 2 0 0 0 1 1 0 1 1\Leftrightarrow0
decima base 1
2
3

binary	decimal
base 2	base 10

$$
\left.\begin{array}{|l|}
\hline 0 \\
1
\end{array} \right\rvert\, \Leftrightarrow \frac{0}{1}
$$

111_{2} represents exactly the same quantity as 7_{10}

0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1	\Leftrightarrow	0
:---:				
1				
2				
3				
$\frac{4}{5}$				
$\frac{6}{7}$				

They are just different ways of representing the same number.

What do the positions represent?

Each position represents one more multiplication by the base value. For binary numbers, the base value is 2 , so each new column represents a multiplication by 2 .

What base 10 decimal value is equivalent to the base 2 binary value 10001010_{2} shown above?

Some Examples

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline 2^{7}=\mathbf{1 2 8} & 2^{6}=\mathbf{6 4} & 2^{5}=\mathbf{3 2}_{2} \quad 2^{4}=\mathbf{1 6} \quad 2^{3}=\mathbf{8} & 2^{2}=\mathbf{4} & 2^{1}=\mathbf{2} & 2^{0}=\mathbf{1} \\
- & - & - & - & - & - & - & - \\
\text { base } 10 \\
& \\
10_{2} & =2_{10} \\
100_{2} & =4_{10} \\
110_{2} & =4_{10}+2_{10}=6_{10} \\
111_{2} & =4_{10}+2_{10}+1_{10}=7_{10} \\
1000_{2} & =8_{10} \\
1001_{2} & =8_{10}+1_{10}=9_{10}
\end{array}
$$

Converting from binary to decimal

$$
\begin{gathered}
1 \cdot 128+0 \cdot 64+0 \cdot 32+1 \cdot 8+0 \cdot 4+1 \cdot 2+0 \cdot 0=138_{10} \\
1 \cdot 128+1 \cdot 8+1 \cdot 2=138_{10}
\end{gathered}
$$

Each position represents one more multiplication by the base value.
For binary numbers, the base value is 2 , so each new column represents a multiplication by 2 .

Use the base, Luke

0123456789

- Each position represents one more multiplication by the base value
» The base value can be 2 - binary numbers
- Two symbols: 0 and 1
- Each column represents a multiplication by two
» The base value can be 10 - decimal numbers
- Ten symbols: $0,1,2,3,4,5,6,7,8,9$
- Each column represents a multiplication by ten

$10 \times 10 \times 10$ $10^{3}=1000$	10×10	10	1		
0	1	3	$10^{2}=100$	$10^{1}=10$	1

$1 \cdot 100+3 \cdot 10+8 \cdot 1=138_{10}$

Base 16 Hexadecimal

- The base value can be 16 - hexadecimal numbers
» Sixteen symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
» Each column represents a multiplication by sixteen
» Hex is easier to use than binary because the numbers are shorter even though they represent the same value

$\begin{aligned} & 16 \times 16 \times 16 \\ & 16^{3}=4096 \end{aligned}$	$\begin{gathered} 16 \times 16 \\ 16^{2}=256 \end{gathered}$	$\begin{gathered} 16 \\ 16^{1}=16 \end{gathered}$	${ }_{16^{0}=1}^{1}$	base 10
0	0	8	A	
$8 \cdot 16+10 \cdot 1=138{ }_{10}$				

Four binary bits \Leftrightarrow One hex digit

Whew! We are now official geeks ...

There are only 10 types of people in the world:
Those who understand binary and those who don't.

Recall: The hardware is binary

- How many numbers can we represent with 0 and 1 ?
» As many as we want, it just takes a little more space to get a bigger range
- So what can we represent with these numbers?
» Anything that has a numeric value or can be associated with a numeric value
» Number of people, index into a list, account balance, ...
" Alphabetic characters, punctuation marks, display tags
" Any signal that can be converted into numeric values
- colors, sounds, water level, blood pressure, temperature
» Computer instructions

Represent numbers

- How many bit positions to allocate?
» Depends on the desired range
» 8 bits $\rightarrow 0$ to 255
- or -128 to +127
» 16 bits $\rightarrow 0$ to 65535
- or -32768 to +32767
» 32 bits $\rightarrow 0$ to 4294967296
- or -2 B to +2 B

Represent Text - ASCII

- Assign a unique number to each character » 7-bit ASCII
- Range is 0 to 127 giving 128 possible values
- There are 95 printable characters
- There are 33 control codes like tab and carriage return

ASCII text

Represent Text - Unicode

- The goal of Unicode is to provide the means to encode the text of every document people want to store in computers
- Unicode aims to provide a unique number for each letter, without regard to typographic variations used by printers
- Unicode encodes each character in a number
» the number can be $7,8,16$, or 32 bits long
> 16-bit encoding is common today

Represent Text - Postscript

- Postscript is a page description language somewhat like HTML
" The file is mostly text and can be looked at with a regular text editor
" programs that know what it is can interpret the embedded commands
» Programs and printers that understand Postscript format can display complex text and graphical images in a standard fashion

Represent Text - PDF

- PDF is another page description language based on Postscript
- The file is mostly text
» can be looked at with a regular text editor
" programs that know what it is can interpret the embedded commands
» just like Postscript and HTML in that respect

Represent Color - Bit Map

- Numbers can represent anything we want
- Recall that we can represent colors with three values
» Red, Green, Blue brightness values
- There are numerous formats for image files
» All of them store some sort of numeric representation of the brightness of each color at each pixel of the image
» commonly use 0 to 255 range (or 0 to FF_{16})

What about "continuous" signals?

- Color and sound are natural quantities that don't come in nice discrete numeric quantities
- But we can "make it so!"

The Information School of the University of Washington

Digitized image contains color data

And much, much more!

Summary

- Bits can represent any information
» Discrete information is directly encoded using binary
» Continuous information is made discrete
- We can look at the bits in different ways
» The format guides us in how to interpret it
» Different interpretations let us work with the data in different ways

