

INFO/CSE 100, Spring 2006 Fluency in Information Technology

http://www.cs.washington.edu/100

Readings and References

Reading

- » Fluency with Information Technology
 - Chapter 8, Bits and the "Why" of Bytes
- References
 - » JEdit java-based editor
 - http;//www.jedit.org

Info Representation

- Digitization: representing information by **any** fixed set of symbols
 - » decide how many different items of information you want to represent
 - Tic Tac Toe: 2 items player 1 or player 2
 - » decide how many "digits" or positions you want to use
 - Tic Tac Toe: 1 position a board square, 9 squares total
 - » decide on a set of symbols
 - player 1: X
 - player 2: O

Are two symbols enough?

We can represent each player's move this way, but what about representing the whole game?

Empty position: \otimes

use this set of symbols

- empty cell: \otimes
- player 1: X
- player 2: O

0	\otimes	\otimes
×	X	0
\otimes	\otimes	\otimes

• Now we can represent this game as one 9-digit length string:

 $\mathsf{O}\otimes\otimes \mathsf{X} \mathsf{X} \mathsf{O}\otimes\otimes \otimes$

• How many possible game states are there?

 $3 \times 3 = 3^9 = 19683$

Another encoding

use a different set of symbols

- empty cell: 0
- player 1: 1
- player 2: **2**

2	0	0
1	1	2
0	0	0

• Now we can represent this game as one 9-digit number:

 $2\ 0\ 0\ 1\ 1\ 2\ 0\ 0\ 0$

How many possible game states are there?
» 3×3×3×3×3×3×3×3=3⁹ = 19683

Info in the Physical World

- Physical world:
 - » The most fundamental representation of information is presence/absence of a phenomenon
 - matter, light, magnetism, flow, charge, ...

The PandA representation

- detect: "Is the phenomenon present?"
- set: make phenomenon present or absent

Any controllable phenomenon works: define it right

Info in the Logical World

- Logical World:
 - » Information, reasoning, computation are formulated by true/false and logic
 - All men are mortal
 - Aristotle is a man
 - Aristotle is mortal
- True and false can be the patterns for encoding information

Connect Physical/Logical

• The power of IT comes from the fact that physical and logical worlds can be connected

-- or maybe vice versa --

Bits

- PandA is a *binary representation* because it uses 2 patterns
- The word "bit"
 - » is a contraction for "binary digit"
 - » represents a position in space/time capable of being set and detected in 2 patterns

Sherlock Holmes's Mystery of Silver Blaze -a popular example where "absent" gives information ... the dog didn't bark, that is the phenomenon wasn't detected

Possible Interpretations of Bit Patterns

Present	Absent
True	False
1	0
On	Off
Yes	No
+	-
Black	White
For	Against
Yang	Ying

Assigning Symbols for Characters

- 26 uppercase and 26 lowercase letters in English, plus 10 digits, plus
- 20 basic punctuation characters
- = 95 distinct characters

Representing this many characters in binary takes 7 bits! 2⁶ (6 bits) gives 64 symbols 2⁷ (7 bits) gives 128 symbols

7-bit code for characters is ASCII

(American Standard Code for Information Interchange)

8-bit ASCII

ASCII	0 0 0	0 0 0 1	0 0 1 0	0 0 1 1	0 1 0 0	0 1 0 1	0 1 1 0	0 1 1 1	1 0 0 0	1 0 0 1	1 0 1 0	1 0 1 1	1 1 0 0	1 1 0 1	1 1 1 0	1 1 1 1
0000	۳u	S.H	sx.	۳x	ĒŢ	EQ	Ŷĸ	ВL	^E S	Ψт	L.F.	×т	FF	°R	5 ₀	s I
0001	₽L	D ₁	₽z	^р з	₽4	Nĸ	5γ	EB	°N	^E M	5 ₈	Ēc	Fs.	٩s	R _S	νs
0010		ļ	"	#	\$	%	&z	'	($\left \right\rangle$	*	+	,	-		$\langle f \rangle$
0011	0	1	2	3	4	5	6	7	8	9	:	÷	<	=	>	?
0100	@	А	В	С	D	E	F	G	Н	Ι	J	К	L	М	Ν	0
0101	Ρ	Q	R	S	Т	U	v	W	x	Y	Z	[1]	^	_
0110		а	b	С	đ	е	f	g	h	į	j	k	1	m	n	Ο
0111	p	q	r	S	t	u	v	w	x	у	z	(}	~	₽⊤
1000	8 ₀	8 ₁	s _e	B	IN	NL	s	E ₅	Hs	н	۷s	PD	Pu	RI	s _z	53
1001	°o	P1	P.E	5 E	°°	т <mark>з</mark>	¤₽	Ēp	°s	°0	° _A	°s	₅	°s	Рн	^p
1010	^A 0	İ	¢	£	Ø	¥		§		C	Ŷ	к	-	-	B	-
1011	0	±	2	m	,	μ	¶	-		1	റ്	>>	1/4	¥₂	3⁄4	Ċ.
1100	À	Á	Â	Ã	Ä	Å	Æ	Ç	È.	É	Ê	Ë	Ì	Í	Î	Ϊ
1101	Ð	Ñ	Ò	Ó	Ô	Õ	Ö	×	ø	Ù	Ú	Û	Ü	Ý	Þ	ß
1110	à	á	â	ã	ä	å	æ	Ç	è	é	ê	ë	ì	í	î	ï
1111	ð	ñ	Ò	Ó	Ô	Õ	Ö	÷	ø	ù	ú	û	ü	ý	þ	ÿ

0100 0110 0100 1001 0101 0100

Bytes

- A byte is eight bits treated as a unit
 - » Adopted by IBM in 1960s
 - » A standard measure until very recently
 - » Bytes encode the Latin alphabet using ASCII -the American Standard Code for Information Interchange

0100 0110 0100 1001 0101 0100

How many bytes?!?

Unicode

- Although 8-bit ASCII is widely used, there is a problem!!!
 - » Doesn't can't support more than 256 characters
 - » This eliminates more than half of the world's language from the character set
- Unicode is a 16-bit representation
 - » Supports 65,536 symbols
 - » Can handle all languages

0100 0110 0000 1001

Escape Codes

- Escape codes solve the problem of creating more symbols
- Put one symbol aside to be the esc symbol.
- Add esc symbol in front of another to create a new symbol
 - » Ctrl-N for example
- HTML uses 7-bit ASCII when transmitting data over the web
 - » HTML uses two special characters <> symbols
 - » What happens if you want those symbols to appear in the content?
 - < >

Hexadecimal Representation

- Computers can very fluently read the binary representations
 - » 0100001010101110101011110101010001010
- Hex digits (base-16) numbers are used instead
 - » 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - » Easily represent 4-bit sequences
 - » 0010 1011 1010 1101 = 2BAD
 - » 0001 1011 0100 0000 = 1B40
- Examples of hex in use: HTML color codes
 - \gg red = #FF0000

Encoding Information

- Bits and bytes encode the information, but that's not all
 - » Tags encode format and some structure in word processors
 - » Tags encode format and some structure in HTML
 - » In the Oxford English Dictionary tags encode structure and some formatting

Summary

- IT joins physical & logical domains so physical devices do our logical work
 - » Symbols represent things 1-to-1
 - » Create symbols by grouping patterns
 - » PandA representation is fundamental
 - presence and absence
 - Can be represented in binary
 - » Bit, a place where 2 patterns set/detect
 - » ASCII is a byte encoding of Latin alphabet
 - » In addition to content, encode structure

