
Project 2B: Javascript Game: WordGuess   
CSE 100/INFO 100 Fluency with Information Technology 

Project 2B 
Part B is worth 70 points and is due on Sunday, May 21, 2005, before 10 pm.  It will consist of a file called 
project2b.html.  Please turn this file into Catalyst, as well as place it under the directory 

public_html/fit100/project2b in your Dante home directory, as with Project 1. 
1. Copy the work you did in project 2A to project2b.html, changing any references to “2A” from “2A” to 

“2B”. Also, get rid of the alert boxes from Part A. 

2. As with part A, make sure you validate your page, write new thoughts in your “thoughts” section, and 

document all your JavaScript code in the same manner as before. 
3. Now write the checkGuess() function, which we started in Part A.  The checkGuess() function 

is run only after the player has entered a guess.  This is pseudo-code for the checkGuess() part of the  

project: 

 

 

Create variable previousGuesses and set it equal to an empty string. 
Create variable totalFound and set it equal to 0. 
 
Begin checkGuess function: 
 Create variable found and set it equal to 0. 
 Read in the value of our input and store it to variable guessedLetter. 
 Change guessedLetter to upper case. 
 For each index i from 0 until the length of previousGuesses 

 (i.e. for each character in previousGuesses), 
  If guessedLetter same as character at index i of previousGuesses, 
   (i.e. guessedLetter equals current character) 
   Show alert box telling user they’ve guessed this letter before. 
   Set found variable to -1. 
 If found variable is not -1, 
  Add guessedLetter to list of previousGuesses. 
  For each index i from 0 until the length of secretWord  

 (i.e. for each character in secretWord), 
   If guessedLetter equals character at index i of secretWord, 
    Write the guessedLetter to the corresponding blank line 
    Add one to the found variable. 
  If found is 0 (i.e. if nothing was found), 
   Add guessedLetter to the HTML area for wrong guesses. 
   Call a function to color in another box of the progress bar. 
  Else 
   Add found to totalFound. 
   If totalFound is equal to the length of secretWord, 
    Display an alert box that tells the player they’ve won. 
    Refresh the page for the user, so they can start over. 
End checkGuess function. 
   
  
  



 

The purpose of the checkGuess() function is to take the letter the player just entered, and check whether 

it has already been guessed. If it hasn’t been guessed, we are going to check if it is actually in our secret 
word by looping through each character of our secret word and matching it with the guessed letter.  

Whenever it is found, we replace the appropriate blanks, and we also keep track of the number of times that 

letter was found.  If it isn’t found, then we write it to the incorrect guesses area of the webpage, and move 
the progress bar. But if it was found, we check to see if the player has guessed all the characters in the code.  

If so, they win. 
a. First of all, delete the old alert box we had there, if you haven’t already gotten rid of it.  

b. We need to create a variable outside of our checkGuess() function that will store all the 

guessed letters.  We’ll call this variable previousGuesses, and for now, it will be empty, i.e. 

it will be an empty string, denoted as two single quote marks with nothing inside. Do this by 

adding the following line in your head near the top of your code, right after you declared your 
secretWord variable. 

var previousGuesses = ''; 
c. Now go back inside the body of your checkGuess() function.  We will create a variable 

called found.  It will keep track of the status of your search for the guessed letter.  If we find 
that the player has already guessed a certain letter, we will store a –1 (negative one) inside the 

found variable.  If this is the player’s first guess at a letter and it has not been found in the 
secret word, the value of found will be 0 (zero).  Otherwise, the value of found will be the 

number of times it has currently been found in the secret word.  In other words, at the end of our 

search, if “little” was the secret word, and the player guessed “t” then the value of found is 2.  
Create your found variable, and assign 0 (zero) to it for now.  We haven’t started searching yet, 

so obviously, we’ve found the guessed letter zero times. 

d. Within the checkGuess() function, create a variable called guessedLetter.  Assign to 

this variable the user’s input.  You should know how to do this from Lab 6.   

e. For simplicity, we are only going to deal with upper case letters in this game.  If you look at the 
pickWord() function we created last time, we used a built-in function called 

toUpperCase() to convert our selected secret word to upper case.  Use this function again to 

change your guessedLetter to upper case, and assign the result back to guessedLetter.  

This should be one line of code. 
f. Since we have already stored the player’s guess in our guessedLetter variable, we can now 

erase whatever the user entered in the box.  Do this by adding the following line after the code 



we just wrote above: 

document.getElementById('guess').value = ''; 
g. Now, write a for loop that loops through the length of previousGuesses.  We will use this 

loop to go through each letter stored in previousGuesses, i.e. look through all the previous 

guesses.  The previousGuesses variable is not necessarily empty, even though we 

initialized it to be so at the beginning, because each time the checkGuess()  function runs, a 

letter will be added to previousGuesses (which we’ll do later), so there might be letters in 

there.  If you’ve forgotten how to write a for loop, look back at the writeBlanks() 

function you wrote last time, and change the appropriate thing(s).  Your loop variable should still 

be i though.  (Loop variables are named i out of convention. Technically, you could name it 
anything and you’d be fine.  But for this project, don’t.) 

h. Inside the body of the for loop you just created, write an if statement (no else block needed) 

that checks if the guessedLetter is equal to the character that is at the current index i of 

previousGuesses, in other words, we’re checking if the user’s guess has already been 

guessed.   To do this you need to use the charAt() function.  To figure out how to use the 

function, look at Homework 3.  Next, inside the body of the if statement, include two 

statements. 

i. Show an alert box that tells the user that they guessed this letter before. 

ii. Change the found variable to be –1 (negative one), indicating that this letter they 

guessed has already been guessed.  If you like, though this is optional, you may also add 
to the continue condition of the for loop you wrote that you should only continue while 

found is still 0, i.e. found is not –1.  This way, we stop the for loop from looping 

again.  
i. Test what you just wrote by changing your variable declaration of previousGuesses at the 

very top of your code to be some list of letters, e.g. 'ABCDE' instead of the empty string '' 

and then try entering guesses into the input box.  When you enter a letter that is in that list, you 

should receive an alert box saying that you have already guessed that letter.  Otherwise, nothing 
should happen.  If this doesn’t happen, debug your work (and don’t forget to write down any 

observations in your “Thoughts” section). After you are satisfied with your program thus far, put 
the empty string back.  

j. Now, after your for loop, write an if statement that executes if found is not –1, in other 

words, it will run as long as we’ve found that the player’s current guess was not in the list of 

previousGuesses. 



k. We will now write quite a few lines of code, all of which will be within the body of the if block 

you just created.  This is because if the letter was already found to have been guessed, we’re 

done, we don’t need anything else to happen.  So, everything inside the checkGuess() 

function from now on will be inside the if block you just created, and I’m not going to write 

explicitly where to put the following code, unless it is in some place different. 

l. Add the current guess to the list of previousGuesses.  This should be one line of code. 

m. Write a for loop that iterates through each character of secretWord. Inside this for loop, 

write an if statement that checks if the guessedLetter is found at the current letter of 

secretWord whose index we’re looping through.  If it is, show an alert box that shows 

what letter we’ve just found.  Test your code.  If it doesn’t work, debug, and keep notes about it. 

n. Once you are done debugging, remove the alert box that you created in the previous 

instruction. 
o. In place of where that alert box used to be, we are going to replace the innerHTML of one of 

the blanks we created earlier (from project2a) with the guessedLetter (since it’s correct).  
This can be done with a line of code that will soon follow.  After you add it, test your code to be 

sure that the blanks are overwritten when you guess a word correctly.  This may require that you 
also show an alert box somewhere showing what your secret word is, or else you won’t really 

know if you’re writing the correct word.  Since you’re being given this line of code for free, 

write a comment in your code above it that explains in detail what every part of this statement 

does. 
document.getElementById('blank' + i).innerHTML = guessedLetter; 

p. Directly beneath the line of code you just added, inside the if-statement that checks whether the 

guessed letter is correct, increment the found variable.  This means to add one to it, and store it 

back to itself.  We’re doing this to keep track of how many times we’ve found the guessed letter.  
So if this was the first time we’ve found the guessedLetter in our secretWord, the 

found variable will change from 0 to 1, whereas if this is the twelfth time you’ve found it 

(assuming it appears that often in your secretWord), you will probably be increasing the 
value of your found variable from 11 to 12.  Test this a few times by showing an alert box 

with the value of your found variable each time you change it.  Remove the box when you are 

done. 
q. Using our for loop, we’ve now gone through each letter of our secret word and checked 

whether the guessed letter matches any of them.  Now, outside of the for loop, check to see if 

any letters were found by writing an if-else statement.   



i. The if-block should execute if nothing was found; use the found variable to determine 

this.  Inside the if-block, we’re going to add the guessedLetter to the list of 

incorrect guesses on our HTML document.   

ii. Create a paragraph with an id attribute of “wrongGuesses” in the body of your 
document, wherever you want your list of wrong guesses to show up. Leave the 

paragraph element empty for now, but in front of the paragraph, create another paragraph 

that says “Wrong guesses:” 
iii. Now, back to that if-block we were writing.  Add the guessedLetter to the 

innerHTML of the paragraph element with the wrongGuesses id.  Remember to add 

to it, not replace what was there.  Test to see if your program works; debug. 
iv. If the player guessed wrong, we also want to move the progress bar.  Inside this if-

block,   call the function moveProgressBar().  This function hasn’t been written yet, 

we will write this function later.  For now, let’s comment out this line, but keep it there as 
a placeholder so we’ll remember where in the code we need to move the progress bar. 

v. The if-block executes when the letter is not found, which means the else-block of this 

if-else statement executes when the guessedLetter is found.  In the else block, 

we want to check if all the letters have now been found, because if so, that means the 

player has won.  To do this, we are going to keep track of the number of letters that have 

been found in the entire game (not just for this guessedLetter) so far, and see if it is 

the same as the number of letters in the secret word.  If so, that means that all the letters 
in our secret word have been found.   

1. Create a variable outside of the checkGuess() function at the top of your code 

(beneath your secretWord and previousGuesses variable declarations), 

called totalFound that is initialized to 0 (zero).  
2. Now, back inside our else-block, increase the value of totalFound by adding 

the value of found to totalFound. 

3. Next, still inside the else-block, write another if-statement that checks if 

totalFound is equal to the length of your secretWord.  If so, display a little 

alert box telling the user that they’ve won.  Also refresh the page for them using 
the following  bit of code: 
window.location.reload(); 

 
r. Test and debug your program.  It should now do everything except for the progress bar part.  The 

game isn’t going to count how many wrong guesses you have. In other words, you can’t lose the 



game, you can only win.  Play with your game for a while to make sure it works.  You’re done 
with the checkGuess() function! Celebrate, take a break, and then come back and work on the 
exciting next part. 

4. We are now going to work on the progress bar.  We will create two functions to do this. First, we’ll create 
a function that creates our progress bar.  This function will be called createProgressBar(). (I know, 
very creative. In programming, the less creative your names, the better.) Then we will create a function that 
moves the progress bar, i.e. colors in the boxes of the progress bar when the player guesses incorrectly.  
When the progress bar reaches the end, this function will display an alert box telling the player that they’ve 
lost, and then it will refresh the page.  This function will be called moveProgressBar().  You should 
recognize this function, it was the function that we called and commented out earlier. 

a. The createProgressBar() function is very similar to the writeBlanks() function from 
project 2A.  Add a call to it in the <body> of your document, and then write the function yourself.  
The function should use a for loop to create ten cells of a table. Do not use the literal value of 10 
in your for loop, create a variable outside your function (up where all the other variables were 
declared) called size and set it equal to the number of boxes we want our progress bar to have, 
and then within your function, loop using that variable.  You can get the borders to show up by 
adding a border attribute to your <table> tag and setting the attribute to 1 (one).  Also, this 
time, instead of assigning the id attribute of the cells to blankx, assign them to progressx, 
where x stands for the box’s number, starting from 0 and going to 9.  Here’s a picture to refresh 
your memory of what the progress bar should look like.   The progress bar is directly under the 
words “Wrong Guesses Left:”.  You may add those words there too, if you like. Test your 
createProgressBar() function, and debug.  Don’t forget to add notes to your “Thoughts” 
section, if necessary.  You should be doing this whenever you debug. 



 

 

b. Finally, let’s write our last function, the moveProgressBar() function. 
i. Uncomment the line where you commented out the moveProgressBar function earlier. 

ii. Create a variable called progressLocation, initialized to 0 (zero).  This variable should 
be in the same place as all your other variables near the beginning of the head of your 
document. 

iii. Create a new function in the head of your HTML document called 
moveProgressBar().   

iv. In the body of your function, create a variable called currentBox and assign to it the 
table data (cell) element that has an id that contains the value of progressLocation.  In 
other words, we are setting our currentBox to be the next box we have to color.  For a 
hint on how to access the element with the correct id attribute, check out the line of code I 
gave you in part o (o as in the letter of the alphabet, o) above, for checkGuesses().  You 
should not be using the exact same line, because you are not doing anything with 
innerHTML here, but rather the entire element itself, but it should give you a clue on how 
to write this one. 

v. We want to take this box and color it.  Do so with the following line.  You may replace 
black with any color you’d like. 
currentBox.style.backgroundColor = 'black'; 

vi. Increment progressLocation by 1 (one). 



vii. If your progressLocation is now equal to the size of your progress bar, show an alert 
that tells the player they’ve lost and what the correct word was, and refresh the page for 
them. 

5. Test your program, debug, write down your debugging process, and document your code. 
6. You may make some style changes to your document if you like, using the HTML skills you learned from 

project 1.  You’re done! 
 

Grading 
For project 2B, you will be graded as follows: 

1. 5 points for correct turn-in and validation. 
2. 5 points for commenting your code 
3. 5 points for your “Thoughts” section 
4. 25 points for your checkGuess() function, and related variables and HTML elements. 
5. 30 points for your createProgressBar(), moveProgressBar() functions, and related 

variables/HTML elements. 
 
…for a total of 70 points.  You may get extra credit as well. Details in the next section. 

Extra Credit (0-5 points, due date same as Project 2B) 
You’re done with your lab, but it’s pretty boring looking, isn’t it? Why not spice it up?  Here are two 

suggestions for extra credit points.  Or think of something on your own, but check with your TA to be sure it’s a 

reasonable idea first.  Don’t start on the extra credit until you’ve finished your project, though. 

You can get at most 5 points extra credit all together.  You may get a 0 if you attempt extra credit, but don’t 
get it right.  You will probably get 2 or 3 points if you do a decent job. You will get 5 points only if you do a 

spectacular, incredible, jaw-dropping job, or if you do more than one piece of extra credit, and do them 
decently.  But think how cool your program will be! 

 

1. Instead of coloring table rows when the player guesses incorrectly, display a series of pictures instead.  
For instance, you can have a series of pictures of an outdoor scene at different times during the day, 

where the sun moves across the sky.  When your pictures reach nighttime, the player loses.  You could 

display your pictures in the progress bar, or you could have an area where you show just a picture.   
Lab 7 should be helpful in figuring out how to do this. Include your picture files in your Catalyst turn-

in. 
2. Currently, our secret words can only be words—we can’t use phrases because we can’t handle spaces 

in our “secret word.”  Change your program such that your secret words can have spaces.  The user 

should not have to guess the spaces, they should be already displayed for them, instead of the blank 
lines.  Your program should still work correctly in all cases. 



 


