
FIT100: Fluency with Information Technology

Project 2

Winter 2004

The goal of Project 2 is to introduce JavaScript, a programming language that allows the
creation of active Web pages. It is possible to create Web pages with animations, pages
that perform computations, and pages that have “ forms” type inputs, like surveys. Project
2 will demonstrate several of these features.

The ultimate goal of the project is to produce the Purple Concentration application.

 (a) Random Problem (b) User Guesses (c) Solution Tested

This is an ambitious project, so we do it in 3 parts. We begin first by a practice exercise
in personalizing the Memory Bank application. Then in two more parts, we build the
Purple Concentration application. Each part will have a separate turn in, and there will
be a version of part B available at the start of part C.

The application has two grids. The one on the left is the Display grid and the one on the
right is the Key grid. The application works as follows. The user clicks “New” to start a
new concentration challenge. A pattern of n randomly chosen red squares is placed in the
Display grid, (a). The user can control n, which is initially 3. This pattern remains
displayed for s seconds, and then it disappears. The user can control s, which is initially

In all parts of Project 2 you must comment the HTML and JavaScript that
you write or change. The comments do not have to be long, but they must
say what you’ve done in a way that is coherent to a human. Uncommented
HTML and JavaScript will not be graded.

5. The user then keys in the same pattern in the Key grid, on the right. With each click on
the key grid, (b) the corresponding square in the Display grid is set to blue. (In Figure (b),
the cursor is over the square shown in brown.) When the user thinks the pattern is right,
he or she clicks the Check button. The matching positions are shown in purple, and the
missed squares are shown in red (c). If the user forgets the pattern and wants to see it
again, clicking on “View” shows it again for s seconds. Finally, the marked squares can
all be cleared using the “Clear” button. (The pattern is remembered.)

Project 2A Exercise
The purpose of part 2A is for you to get experience modifying and running JavaScript
programs in order to become familiar the JavaScript programming process. So, the task
is to customize the Memory Bank program from Chapter 20 pp. 559-572.

Read these pages before proceeding further.
The source for that program can be found at www.aw.com/snyder/ and copied.
(Remember, you need to grab the GIF for the bullet mark, too.) Or, you can type in the
code from Appendix D, pp. 690-693; but if you do, type it very carefully to avoid errors.

Your specific tasks are as follows (refer to the Memory Bank page).

A1. Change the Look. Make some modification(s) to the “ look” of the Memory Bank
page. You can completely change it, or only slightly modify it by revising its background

color, font, font color, etc. to your liking. The result should be attractive. Also, change
the level 1 heading to include your name. For example, I would change it to “Larry’s
Memory Bank.”

A2. Add a link to the Web page. Since JavaScript uses HTML, the links to remote
pages are just HTML links, which you are already familiar with. Change the links in the
Memory Bank program so that they point to destinations of interest to you.

(a) To the Reference links, add a link of personal interest, or a link to
www. googl e. com/ advanced_sear ch?hl =en (or both).

(b) Change the Classes entries to match your classes, i.e. make some link suitable for
each of your classes this term.

(c) Add one more category of links of your choice, say, links to Friends, links to
News, or a Hot-List of favorite sites.

A3. Good as Gold. Add a new computation line to the Memory Bank page. Your
computation can be one of your own choosing, or it can be the following computation to
compute how much a weight in gold is worth, or both. (On January 28, gold was trading
for $409.90 per troy ounce, of which there are 12 per pound.) Therefore, the “weight in
gold” computation is

Worth = (Weight*12)*409.9

Using the analogy of the Celsius to Fahrenheit computation that already exists on the
Memory Bank page,

(a) Create a new row in Memory Bank with the proper title (left side table data).
(b) For the right hand side table data, construct the text input window. Begin with the

text “Weight LBS” , and then place the input window, giving it a unique name
and a size of 3.

(c) Construct the text input window (for output). Place the text “Worth As Gold $” ,
and then place the window, giving it a unique name, and a size of 7.

(d) Construct a function—place it with the other functions—named gol dwor t h() ,
and having one parameter. The function gol dwor t h() returns the dollar value
of a given weight (in lbs) of gold.

(e) Define the onChange event handler for the input control of (b) to assign the
result of the gol dwor t h() function applied to the input value from (b) to the
output window of (c). (Notice how this is done in Celsius to Fahrenheit line.)

(f) Include the following “ last modified” code on your page at the bottom. (If the
position where you place this code is already inside JavaScript tags, you do not
need those shown.):

<scr i pt l anguage = " JavaScr i pt " >
var _modi f i ed;
document . wr i t e(" Last Modi f i ed: ") ;
modi f i ed = document . l ast Modi f i ed;

document . wr i t e(modi f i ed) ;
</ scr i pt >

Hint: Part A3 is extremely easy if you have studied and understood the Celsius to
Fahrenheit computation.

A4. Create the Purple Concentration Page. Having practiced input controls for the
“Good as Gold” computation, build a page for the Purple Concentration application. Give
it a heading as shown in the figure. Then, set up a table with a beige background
(#FFCC88), a two-unit border, and two rows. The first row has two data entries (use ‘A’
and ‘B’ for the data until we set up the pattern and key grids), and the second row that has
only one data entry that spans two columns. (Check the Memory Bank’s definition to see
how the border and spanning two columns are done.) Place four command buttons—
New, View, Check and Clear—in the second row in preparation for the next part. The
page will be very primitive, but it will be filled in later. (Notice how everything is
centered.)

A5. Include the following “ last modified” code on your page at the bottom.

<scr i pt l anguage = " JavaScr i pt " >
var _modi f i ed;
document . wr i t e(" Last Modi f i ed: ") ;
modi f i ed = document . l ast Modi f i ed;
document . wr i t e(modi f i ed) ;
</ scr i pt >

A6. Turn In. Publish your new Memory Bank page in your Web space under a unique
name. (Your Memory Bank page is for your use, not for public use, so choose a name
that is memorable to you.) Remember to include the bul l et . gi f . Also, publish your
Purple Concentration Page in your Web space, also under a unique name.

(a) Have your pages published by 11:30 PM, Tuesday February 10, 2004.
(b) Do not modify your page until after it is graded.
(c) Print the HTML/JavaScript source for both pages, add your name and section

letters, and turn it in in class on Wednesday, February 11, 2004.

Project 2B Grid Arrays

The purpose of Part 2B is to set up the Display and Key grids for the Purple
Concentration application. The “grids” are actually tiny GIF images, and as the mouse
moves over the Key grid, they change color. The resulting page has the form

This part depends on your knowing “Prefetching Images” and “Redrawing Images,” (pp.
596-599) of Chapter 21, and “Key Sensing Task” (pp. 620-623) of Chapter 22. The
following explanation assumes you’ re familiar with that reading.

B1. Grab the GIFs. Retrieve the six . gi f files to your desktop from the Resources page
at the class Web site. You will get a brown, orange, red, white, blue and purple square:

You will only use some of these GIFs for Part B, but you will use them all by the end of
the project. So, get them now.

B2. Prefetch the GIFs. Step B1 only got the GIFs to your computer so you can work on
the project. The Web page (from A4) must also get the files for its use. This is called
prefetching the files, and is done so that the time to transmit them over the Web doesn’ t
cause delay in the application.

As explained in Prefetching Images in the textbook, it is necessary to declare an array to
hold the fetched images. You need an array with as many elements as images, that is,
six. The array elements must be initialized to be new I mage. And then, the GIFs must
be assigned to the array elements. You will perform the following steps:

In all parts of Project 2 you must comment the HTML and JavaScript that
you write or change. The comments do not have to be long, but they must
say what you’ve done in a way that is coherent to a human. Uncommented
HTML and JavaScript will not be graded.

a) Specify a pair of script tags so you have a place to write your JavaScript program.
b) Using var declare an array variable with a unique name of your choice; the array

variable will contain the images, and so will need six elements; also, because
iteration variables will be needed, declare two of them now, such as i and j .

c) Write a loop – use the World Famous Iteration and use i as the iteration variable
– to initialize the array elements to new I mage.

d) Assign the six GIF images to the . sr c field of the array. Notice that you cannot
use a loop for this because the GIFs all have different names. Assign the images
to the elements in the order shown above: Br ownBox. gi f , Or angeBox. gi f ,
RedBox. gi f , Whi t eBox. gi f , Bl ueBox. gi f , Pur pl eBox. gi f .

B3. Place The First Row of Display Grid. Recall that to place the Whi t eBox. gi f on
a Web page, JavaScript can be used to place the proper image tag in the source file with
the command

document . wr i t e(<i mg sr c=" Whi t eBox. gi f " >)

To create the Display grid we will need to iterate that command seven times to make a
row, and to iterate that row operation seven times to create the whole 7×7 grid. (Check p.
616 for an example of making a row of images.) Creating a row of the Display grid is the
purpose of this step.

The Display grid goes in the “A” position of the present Web page (A4), which is inside a
table. In that table data element, replace the “A” with a pair of script tags, and insert
JavaScript code to accomplish the following operations.

a) Write a WFI that iterates seven times using the iteration variable of B2b.
b) On each iteration of the loop, place an image tag for the Whi t eBox. gi f into

the source file using the document . wr i t e() operation.

Check the page. It should look like this.

c) After the loop, place a
 tag into the source file using another

document . wr i t e() . This moves the HTML cursor to the next line.

B4. Create the Display Grid. With one row completed it is a simple matter to create the
entire grid—just iterate the iteration of B3! By repeating the row-creation operation
seven times we get the 7×7 grid.

To iterate the iteration, write a WFI around the loop of B3. That is, using the other
iteration variable declared in B2b, define a WFI whose body is the iteration and the

tag of B3.

Check the result. It will look like this.

B5. Create the Key Grid. The Key grid is created just like the Display grid was created,
except that it replaces the “B” table element.

a) Perform the operations specified in steps B3 and B4 to create the Key grid with
the Br ownBox. gi f image. This can be done by copy/paste/edit, but it is great
experience to rewrite the loops by hand.

Check the result. The figure will look like the figure at the start of Part B, above.

B6. Add Event Handlers to the Key Grid. When the mouse moves over the Key grid
the box beneath the mouse pointer is to turn from brown to orange. When the mouse
moves off of the key, it turns back to brown. If the mouse is clicked the key turns from
orange to red. Making these changes is the goal of this step.

For the grid of GIFs to become mouse keys, we must add event handlers to each of the
images placed in B5. (See pages 620-623 in the textbook.) The event handlers will tell
the browser what it is to do when the mouse is over a GIF. Three events will be useful for
the Purple Concentration:

MouseOver is the event of a mouse being over a GIF,
MouseOut is the event of a mouse, having previously been over a GIF, to move

somewhere else
Cl i ck is the event of a mouse button being clicked on the GIF.

We will use event handlers named t ouch() for the onMouseOver event,
unt ouch() for the onMouseOut event, and change() for the onCl i ck event.

In order for the events to cause the boxes to change color (be over-written with a different
colored box), we will need to know where in the grid the box is. A box’s position is given
by its row and column position in the 2 dimensional grid. So, each of the three procedures
will have a parameter for the row position and a second parameter for the column
position: t ouch(r ow, col) , unt ouch(r ow, col) , change(r ow, col) . The
r ow is the number of rows down from the top, 0-origin indexing, and col is the number
of columns from left, 0-origin. Thus, the box at the upper left hand corner of each of the
grids is row=0, col=0, and the lower right hand corner is row=6, col=6. This is
convenient, because it means that row is just the iteration variable of the WFI that created
the row (outer loop), and col is just the iteration variable of the WFI that created the box
(inner loop).

The event handlers are included in the <i mg sr c=…> tags. (See how this is done with a
single position parameter on p. 623 of the textbook. Notice that the event handler calls
are constructed using concatenation.) These tags were written in B5. So return to that
loop and revise the document . wr i t e to include the onMouseOver event by calling
the t ouch(<row>, <col>) procedure, where <row> is the iteration variable of the
outer loop and <col> is the iteration variable of the inner loop. At the same time, include
the onMouseOut event calling the unt ouch(<row>, <col>) procedure and the
onCl i ck event calling the change(<row>, <col>) procedure, with the same
parameter settings.

Check that the Web page still works. (It won’ t look any different, because the functions
t ouch() ,unt ouch() and change() haven’ t been written, but it is wise to check at
this point since it is easy to mess up the construction of the event handler calls.)

B7. Activate the Key Grid. To make the Key grid to be active, we need to write the
functions t ouch() , unt ouch() and change() . What are they supposed to do?
The t ouch(r ow, col) handler should turn the brown box at r ow, col to orange,
and unt ouch(r ow, col) should do the opposite and the change(r ow, col)
function should turn the Key grid square to red, indicating it was clicked, and turn the
corresponding Display grid to blue. To over-write the boxes, it is necessary to refer to
them where they are stored in the document . i mages part of the Web page
description. (This is explained under Redrawing Images on p. 598 of the textbook.)

There are three complications in referencing the grid images in document . i mages .

First, the images are stored in the order in which the browser placed them on the Web
page, which means that the Display grid images are listed first, and the Key grid images
follow. Because there are 49 Display grid images, they must be indexed as 0 through 48.
Because there are 49 Key grid images and they come next, they must be indexed 49
through 97.

The second complication is that we have the r ow and col numbers of the box, but we
don’ t have its index numbers. But we can find them because there are r ow* 7 + col

boxes ahead of any box in its grid (check this!), which is it’s index. And there are 49
additional boxes from the Display grid ahead of the boxes in the Key grid. So, to change
a box in the Key grid we must over-write the box indexed by

 49 + r ow* 7 + col

stored in the . sr c field of document . i mages .

The third complication is that the over-write should use the images prefetched, but they
cannot be referred to by their file names, so they’ re referred to by their index in the array
into which they were prefetched. (Recall that you chose a unique name for this in B2b.) If
the colors were stored in the order given above, then the orange box needed for
t ouch() was prefetched into <your unique name>[1] . sr c and the brown box needed
for unt ouch() was prefetched into <your unique name>[0] . sr c , etc.

After the table definition on the Purple Concentration, place a pair of script tags, and
within them define the three functions, t ouch(r ow, col) , unt ouch(r ow, col)
and change(r ow, col) .

a) t ouch() changes document . i mages[49+r ow* 7+col] . sr c from (the
current) brown box to an orange box, that is Or angeBox. gi f , which is stored
in <yourArrayName>[1] in step B2.

b) unt ouch() changes document . i mages[49+r ow* 7+col] . sr c from (the
current) orange or red box to brown, that is Br ownBox. gi f , which you stored
in <yourArrayName>[0] in step B2.

c) change() changes document . i mages[49+r ow* 7+col] . sr c from (the
current) orange box to red, that is RedBox. gi f , which you stored in
<yourArrayName>[2] in step B2. It also changes
document . i mages[r ow* 7+col] . sr c from a (probably) white box to blue,
that is, Bl ueBox. gi f , which you stored in <yourArrayName>[4] in step B2.

The functions do not have to return any value. Their whole operation is to make the
assignment to update document . i mages from the prefetched GIFs.

Check the result. With only the onMouseOver event defined it is possible to turn the
boxes to orange but not turn them off. So sweeping the mouse across the Key grid in an
“X” results in an image like this

When the onMouseOut event is defined, the orange will change back to brown as the
mouse moves away.

B8. Turn In. Publish your new page in your Web space under a unique name.

a) Have your page published by 11:30 PM, Thursday, February 19, 2004.
b) Do not modify your page until after it is graded.
c) Print the HTML/JavaScript source, add your name, address and section letters,

and turn it in in class February 20, 2004.

Project 2C Completion of Purple Concentration

The goal of this part is to complete the application begun in Part B. If you completed Part
B, use your solution, but if not, get a working version of part B here.

The main task is to generate the random red square pattern and save it in an array so that
the result can be checked. To create the random pattern will require the use of the random
number generator as shown at the bottom on Figure 21.1 in the textbook.

C1: Set Clear Event Handler. The Clear button is to “white out” the Display grid. The
function that will perform that operation (written next) will be called whi t eout () .

a) Set the onCl i ck event handler for the Clear button to be a call to the
whi t eout () function.

C2. Write the whiteout() Function. The whi t eout () event handler clears all of
the positions on the Display Grid. That is, it sets the first 49 images in
document . i mages array to Whi t eBox. gi f , which was the value it was initialized
to in Part 2B and is (probably) stored in the index 3 position of the image array, that is,
<yourArrayName>[3] . sr c .

a) Write the whi t eout () event handler function as a loop from 0 to 48 assigning
the . sr c field of document . i mages the white box. (Notice that you can also
use a loop within a loop, each with seven iterations, as if visiting rows and
columns; if i is the outer loop iteration variable and j is the inner loop iteration
variable, the positions of document . i mages being updated are i * 7+j .)

b) Place the whi t eout () function with the others previously written.

C3. Create a Random Pattern. Include the r andNum() function of Chapter 21 among
the functions at in the Purple Concentration application.

In all parts of Project 2 you must comment the HTML and JavaScript that
you write or change. The comments do not have to be long, but they must
say what you’ve done in a way that is coherent to a human. Uncommented
HTML and JavaScript will not be graded.

Declare variables squar es , initialized to 3, and two ten-element arrays, pr obr and
pr obc . These two arrays will hold the random positions of the pattern, pr obr
containing its row position, and pr obc containing its column position. The variable
squar es is the number of squares in the pattern. So, initializing the random positions
will be a function, set Up() with three steps:

a) Clear the array by making a call on whi t eout () .
b) Set up a WFI loop iterating squar es times, and on the ith iteration assign a

random number over a range = 7 (0 through 6) to pr obr [i] and a random
number over the same range to pr obc[i] .

c) Display the random pattern with a call to show() , which is a new function
written in the next part.

Notice that one shortcoming of the application (which we will not worry about) is that
two random positions could be identical, lowering the number of squares below the
squar es count.

Make set Up() the onCl i ck event handler for the New button.

Check your application.

C4. Write the show() Function. The show() function copies the random pattern
into the pattern grid. It simply requires a loop of squar es iterations in which on the ith
iteration the square with row position pr obr [i] and the column position pr obc[i] is
set to red. This requires that the index of the proper element in document . i mages is
computed with the two values, and then set to the prefetched image, which is, by now, a
standard operation.

Next declare a variable, t i mer I D, and add to the end of the show() function a call to
clear the pattern grid after five seconds. The timer call, as explained on p. 402 of the
textbook, has the form

 t i mer I D = set Ti meout (" whi t eout () ” , 5000) ;

which will clear the pattern grid after the indicated amount of time.

Make show() the onCl i ck event handler function for the View button.

Check your application.

C5. Allow the User to Pick. There are really two steps. When the user clicks on a Key
grid square, the corresponding Display grid square must be set to blue. This was done by
the change() function described above. But, if the user clicks a second time, the
square should return to white, i.e. it is an undo. Second, we must record the square the
user clicked so we can check it later. Making these changes requires the following steps:

a) Declare a variable set Or No as an array with 49 items, because any of the
Disiplay squares can be set.

b) We will use a value of 0 to indicate the square has not been set and 1 to indicate
that it has been. Initialize the set Or No array to zero in the loop that you wrote
in step C2. (This is a good logical place to initialize set Or No because the
squares are being set up to be white, and a 0 initialization will indicate that.)

c) Change the change(r ow, col) event handler function. Rather than
displaying blue every time, use an if-statement to check to see if
set Or No[r ow* 7+col] is equal to 0. If it is, set the square to blue, as usual,
and set set Or No[r ow* 7+col] to 1. If not, it is already blue, so set it to white,
and clear the bit at set Or No[r ow* 7+col] to zero.

Test out your solution and be sure that two clicks on a square set it back to white.

C6. Write the check() Function. To check how the user has done with the
concentration challenge, we simply go through the pattern and see if the position is set by
the user or not, as indicated in the set Or No. If it is set, then the user got the position,
and we should draw it purple. If the position is not set, it should be drawn in red to show
it was part of the original pattern. The steps are

a) Create a WFI for squar es iterations.
b) On the ith iteration, use an i f statement to see if the element at index

pr obr [i] * 7 + pr obc[i] of set Or No is set.
c) If the position is set (1), fill the corresponding position of the Display grid with

the purple square, which has been prefetched in Part 2, and is (probably) stored in
the image array at index position 5.

d) If the position is not set (0), fill the position with the red square.

Make check() the onCl i ck event handler function for the Check button.

The application is complete! Congratulations. Try it out.

C7. [Extra Credit] Add Controls. The controls are input buttons and windows for
setting the number of squares in the pattern and setting the amount of time they are
displayed. (See the original version of the application at the beginning of this
description.) These controls are not needed for operation of the application, but they
make it more useful. For extra credit, add them!

First, extend the form in the second row of the table to include all of the controls shown.

Next, change the number of squares in the pattern. Doing so requires the event handler to
add or subtract one from squar es . Make the upper limit 10 (that’s all the space there is
in pr obr and pr obc arrays to save pattern positions), and the lower limit 1. It is
suggested that you use a function, of the form,

 squar es = Mat h. mi n(10, squar es+1)

which keeps squar es from exceeding the limit. Mat h. mi n returns the smaller of its
two arguments. For subtracting, there is also a Mat h. max .

Finally, control the time of the application. This will require the use of the Mat h. mi n
and Mat h. max functions, and a new variable, dur at i on, initialized in its declaration
to 5000. The timer setting operation in C4 must have the 5000 parameter replaced with
dur at i on in order have the variable amount of time be set. The event handlers for
increasing and decreasing the time must work in units of 1000, since time is measured in
milliseconds.

Try out the full application!

C9. Turn In. Publish your new page in your Web space under a unique name.

a) Have your completed page published by 11:30 PM, Thursday, Feb. 26, 2004.
b) Do not modify your page until after it is graded.
c) Print the HTML/JavaScript source, add your name, address and section number,

and turn it in in class February 27, 2004.

