
1

FIT100FIT100FIT100

More Digital
Representation

Discrete information is
represented in binary (PandA),
and “continuous” information is

made discrete

FIT100FIT100FIT100
Return To RGB

Images are constructed from picture
elements (pixels); color uses RGB light

The RGB color intensities are specified by 3
numbers in the range [0, 255], ie 1 byte each

Black = [0, 0, 0] 0000 0000 0000 0000 0000 0000

Gray = [128,128,128] 1000 0000 1000 0000 1000 0000

White = [255,255,255] 1111 1111 1111 1111 1111 1111

White-gray-black all have same values for RGB

FIT100FIT100FIT100
Colors

Colors use different combinations of
RGB

• Husky Purple
Red=160
Green=76
Blue=230

FIT100FIT100FIT100
Positional Notation

The RGB intensities are binary numbers
Binary numbers, like decimal numbers,

use place notation
1101 = 1x1000 + 1x100 + 0x10 + 1x1

= 1x103 + 1x102 + 0x101 + 1x100

except that the base is 2 not 10
1101 = 1x8 + 1x4 + 0x2 + 1x1

= 1x23 + 1x22 + 0x21 + 1x20

1101 in binary is 13 in decimal

Base or
radix

FIT100FIT100FIT100
Binary Numbers

Given a binary number, add up the
powers of 2 corresponding to 1s
1010 0000

0x20 = 0x1 = 0
0x21 = 0x2 = 0
0x22 = 0x4 = 0
0x23 = 0x8 = 0
0x24 = 0x16 = 0
1x25 = 1x32 = 32
0x26 = 0x64 = 0
1x27 = 1x128 = 128

= 160

FIT100FIT100FIT100
Binary Numbers

Given a binary number, add up the
powers of 2 corresponding to 1s
0100 1100

0x20 = 0
0x21 = 0
1x22 = 4
1x23 = 8
0x24 = 0
0x25 = 0
1x26 = 64
0x27 = 0

= 76

2

FIT100FIT100FIT100
Binary Numbers

Given a binary number, add up the
powers of 2 corresponding to 1s
1110 0110

0x20 = 0
1x21 = 2
1x22 = 4
0x23 = 0
0x24 = 0
1x25 = 32
1x26 = 64
1x27 = 128

= 230

FIT100FIT100FIT100
Husky Purple

Recall that Husky purple is (160,76,230)
which in binary is

1010 0000 0100 1100 1110 0110
160 76 230

Suppose you decide it’s not “red” enough
• Increase the red by 16 = 1 0000

1010 0000
+ 1 0000

1011 0000

Adding in binary is
pretty much like
adding in decimal

FIT100FIT100FIT100
A Redder Purple

Increase by 16 more

00110 000 Carries
1011 0000

+ 1 0000
1100 0000

The rule: When the “place sum” equals
the radix or more, subtract radix & carry

FIT100FIT100FIT100
Find Binary From Decimal

The conversion algorithm
Start: x is the number to convert
1. Let d the largest numbers so 2d ≤ x
2. Is d ≥ 0, i.e. more digits to process? No, end
3. Is x ≥ 2d, i.e. is x at least as large as 2d?

3t. Yes, the binary place is 1; x=x-2d

3f. No, the binary place is 0
4. d = d - 1, go to Step 2

FIT100FIT100FIT100
Find Binary From Decimal

Start: x is the number to convert
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x 2d x ≥≥≥≥ 2d bit
7=d 230 128 yes 1
6 102 64 yes 1
5 38 32 yes 1
4 6 16 no 0
3 6 8 no 0
2 6 4 yes 1
1 2 2 yes 1
0 0 1 no 01110 0110

FIT100FIT100FIT100
Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x 2d x ≥≥≥≥ 2d bit
141

3

FIT100FIT100FIT100
Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x 2d x ≥≥≥≥ 2d bit
7=d 141 128 yes 1

FIT100FIT100FIT100
Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x 2d x ≥≥≥≥ 2d bit
7=d 141 128 yes 1
6 13

FIT100FIT100FIT100
Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x 2d x ≥≥≥≥ 2d bit
7=d 141 128 yes 1
6 13 64 no 0
5 13

FIT100FIT100FIT100
Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x 2d x ≥≥≥≥ 2d bit
7=d 141 128 yes 1
6 13 64 no 0
5 13 32 no 0
4 13 16 no 0
3 13

FIT100FIT100FIT100
Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x 2d x ≥≥≥≥ 2d bit
7=d 141 128 yes 1
6 13 64 no 0
5 13 32 no 0
4 13 16 no 0
3 13 8 yes 1
2 5

FIT100FIT100FIT100
Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x 2d x ≥≥≥≥ 2d bit
7=d 141 128 yes 1
6 13 64 no 0
5 13 32 no 0
4 13 16 no 0
3 13 8 yes 1
2 5 4 yes 1
1 1

4

FIT100FIT100FIT100
Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x 2d x ≥≥≥≥ 2d bit
7=d 141 128 yes 1
6 13 64 no 0
5 13 32 no 0
4 13 16 no 0
3 13 8 yes 1
2 5 4 yes 1
1 1 2 no 0
0 1 1 yes 1

FIT100FIT100FIT100
Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x 2d x ≥≥≥≥ 2d bit
7=d 141 128 yes 1
6 13 64 no 0
5 13 32 no 0
4 13 16 no 0
3 13 8 yes 1
2 5 4 yes 1
1 1 2 no 0
0 1 1 yes 11000 1101

FIT100FIT100FIT100
Digitizing

“Continuous” information like light and
sound must be made “discrete”

M
i
c

Digital
to

Analog

001011101
001101100
000100111
111001010
001101100
100100111
101001010

Analog
to

Digital

S
p
k

Digital audio uses 44,100
samples per second of 16
bits on two channels, or
10,584,000 B/min

FIT100FIT100FIT100
Information Processing

Manipulating pixels is an example of
“computing on a representation”

• Photoshop & other graphics SW manipulate
pictures by computing on representation

• Audio is edited similarly to remove coughs
and other odd sounds, speed up, etc.

• Searching the dictionary is another
example

Information processing depends
on computing on representations

FIT100FIT100FIT100
Bits Are It

Bits represent information, but their
interpretation gives bits meaning

0000 0000 1111 0001 0000 1000 0010 0000
• Could be a number, color, instruction,

ASCII, sound samples, IP address, …

Bias-free Universal Medium Principle: Bits
can represent all discrete information;
bits have no inherent meaning

FIT100FIT100FIT100
Summary

Bits can represent any information
∗ Discrete information is directly encoded

using binary
∗ Continuous information is made discrete
∗ “Computing on representations” is the

key to “information processing”
∗ Bias-free Universal Medium Principle

