

White-gray-black all have same values for RGB

Bibary Numbers
Given a binary number, add up the
powers of 2 corresponding to 1s
1110 0110
$1x2^{1} = 2$ $1x2^{2} = 4$
1x25 = 32
$1 \times 2^{6} = 64$
$1x2^{7} = \frac{128}{230}$

Recall that H which in bi

Suppose you decide it's not "red" enough • Increase the red by 16 = 1 0000 1010 0000 - + 1 0000 1011 0000 1011 0000 Adding in binary is pretty much like adding in decimal

1011,0000

Anot						
Convert $x = 141$ to binary						
1. Let d the largest numbers so 2	2 ^d ≤ x					
2. Is $d \ge 0$, i.e. more digits to pro	cess? N	lo, er	nd 🖊			
3. Is $x \ge 2^d$, i.e. is x at least large	a 2ª?					
3t. Y, binary place=1;x=x-2 ^d	Place	×	2ª	x > 20	bit	
3f. N, binary place=0	7=d	141	128	yes	1	
4. d = d - 1, go to Step 2	6	13	64	no	0	
	5	13	32	no	0	
	4	13	16	no	0	
///////////////////////////////////////	3	13				

Convert x = 141 to binary 1. Let d the largest numbers so $2^{d} \le x$ 2. Is $d \ge 0$, i.e. more digits to process? No, end 3. Is $x \ge 2^{d}$, i.e. is x at least large a $2^{d?}$ 3. Y, binary place=1;x=x-2^{d} 3. N, binary place=0 4. $d = d - 1$, go to Step 2 d = 3 d =
Convert x = 141 to binary1. Let d the largest numbers so $2^d \le x$ 2. Is $d \ge 0$, i.e. more digits to process? No, end3. Is $x \ge 2^d$, i.e. is x at least large a $2^{d?}$ 3f. Y, binary place=1;x=x-2^d3f. N, binary place=04. $d = d - 1$, go to Step 24. $d = d - 1$, go to Step 24. $d = d - 1$, go to Step 2
1. Let d the largest numbers so $2^d \le x$ 2. Is $d \ge 0$, i.e. more digits to process? No, end3. Is $x \ge 2^d$, i.e. is x at least large a 2^d ?3t. Y, binary place=1;x=x-2^d3t. N, binary place=04. $d = d - 1$, go to Step 24. $d = d - 1$, go to Step 24. $d = d - 1$, go to Step 25. $d \ge 2^d$ bit4. $d = d - 1$, go to Step 25. $d \ge 2^d$ bit4. $d = d - 1$, go to Step 25. $d \ge 2^d$ bit3. $d \ge 2^d$ bit
2. Is d ≥ 0 , i.e. more digits to process? No, end3. Is x $\geq 2^d$, i.e. is x at least large a $2^{d?}$ 3t. Y, binary place=1;x=x- 2^d 3t. N, binary place=04. d = d - 1, go to Step 24. 13161617181919101010101010101010101111121314141516161718191010101010101010101010101112131314151515161617181910
3. Is $x \ge 2^d$, i.e. is x at least large a $2^{d?}$ 3t. Y, binary place=1;x=x- 2^d 3f. N, binary place=0 4. d = d - 1, go to Step 2 5 13 16 16 17 18 19 10 10 11 12 13 14 13 16 13 14 13 16 13 14 15 16 16 16
3t. Y, binary place=1;x=x-2 ^d Place x 2 ^d $x \ge 2^d$ bit 3f. N, binary place=0 7=d 141 128 yes 1 4. d = d - 1, go to Step 2 5 13 32 no 0 4. d = d - 1, go to Step 2 6 13 32 no 0
3f. N, binary place=0 7=d 141 128 yes 1 4. d = d - 1, go to Step 2 6 13 64 no 0 5 13 32 no 0 4 13 16 no 0
4. d = d - 1, go to Step 2 5 13 64 no 0 5 13 32 no 0 4 13 16 no 0
5 13 32 no 0 4 13 16 no 0
4 13 16 no 0
//////////////////////////////////////
//////////////////////////////////////
1 1 2 no 0
0 1 1 yes 1

Anoti Dinii						
Convert $x = 141$ to binary 1. Let d the largest numbers so 2 2. Is $d \ge 0$, i.e. more digits to pro-	y', $2^d \le x$ process? N	lo, er	nd			
3. Is x ≥ 2°, i.e. is x at least large 3t. Y, binary place=1;x=x-2 ^d 3t. N. binary place=0	Place	X	2 ^d	x ≥ 2°	bit	
4. $d = d - 1$, go to Step 2	6 5	141 13 13	64 32	no no	0	
	4 3	13 13	16 8	no yes	0	
1000 1101	1 0	5 1 1	4 2 1	yes no yes	0	

Manipulating pixels is an example of *computing on a representation"

- Photoshop & other graphics SW manipulate
 pictures by computing on representation
- Audio is edited similarly to remove coughs and other odd sounds, speed up, etc.
- Searching the dictionary is another
 example

Information processing depends on computing on representations

its represent information, but their interpretation gives bits meaning 0000 0000 1111 0001 0000 1000 0010 0000 • Could be a number, color, instruction, ASCII, sound samples, IP address, ...

Bias-free Universal Medium Principle: Bits can represent all discrete information; bits have no inherent meaning

650

Bits can represent any information

- * Discrete information is directly encoded using binary
- * Continuous information is made discrete
- * "Computing on representations" is the
- key to "information processing"
- * Bias-free Universal Medium Principle