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More Digital 
Representation

Discrete information is 
represented in binary (PandA), 
and “continuous” information is 

made discrete
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Return To RGB

Images are constructed from picture 
elements (pixels); color uses RGB light

The RGB color intensities are specified by 3 
numbers in the range [0, 255], ie 1 byte each

Black = [  0,  0,  0] 0000 0000  0000 0000  0000 0000

Gray = [128,128,128] 1000 0000  1000 0000  1000 0000

White = [255,255,255] 1111 1111  1111 1111  1111 1111

White-gray-black all have same values for RGB
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Colors

Colors use different combinations of 
RGB

• Husky Purple
Red=160
Green=76
Blue=230
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Positional Notation

The RGB intensities are binary numbers
Binary numbers, like decimal numbers, 

use place notation
1101 = 1x1000 + 1x100 + 0x10  + 1x1

= 1x103 + 1x102 + 0x101 + 1x100

except that the base is 2 not 10
1101 = 1x8  + 1x4   + 0x2  + 1x1

= 1x23 + 1x22 + 0x21 + 1x20

1101 in binary is 13 in decimal

Base or 
radix
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Binary Numbers

Given a binary number, add up the 
powers of 2 corresponding to 1s
1010 0000

0x20 = 0x1 = 0
0x21 = 0x2 = 0
0x22 = 0x4 = 0
0x23 = 0x8 = 0
0x24 = 0x16 = 0
1x25 = 1x32 = 32
0x26 = 0x64 = 0
1x27 = 1x128 = 128

= 160
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Binary Numbers

Given a binary number, add up the 
powers of 2 corresponding to 1s
0100 1100

0x20 = 0
0x21 = 0
1x22 = 4
1x23 = 8
0x24 = 0
0x25 = 0
1x26 = 64
0x27 = 0

= 76
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Binary Numbers

Given a binary number, add up the 
powers of 2 corresponding to 1s
1110 0110

0x20 = 0
1x21 = 2
1x22 = 4
0x23 = 0
0x24 = 0
1x25 = 32
1x26 = 64
1x27 = 128

= 230
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Husky Purple

Recall that Husky purple is  (160,76,230) 
which in binary is

1010 0000  0100 1100  1110 0110
160 76 230

Suppose you decide it’s not “red” enough
• Increase the red by 16 = 1 0000

1010 0000
+ 1 0000

1011 0000

Adding in binary is 
pretty much like 
adding in decimal
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A Redder Purple

Increase by 16 more

00110 000 Carries
1011 0000

+ 1 0000
1100 0000

The rule: When the “place sum” equals 
the radix or more, subtract radix & carry
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Find Binary From Decimal

The conversion algorithm
Start: x is the number to convert
1. Let d the largest numbers so 2d ≤ x
2. Is d ≥ 0, i.e. more digits to process? No, end
3. Is x ≥ 2d, i.e. is x at least as large as 2d?

3t. Yes, the binary place is 1; x=x-2d

3f. No, the binary place is 0
4. d = d - 1, go to Step 2
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Find Binary From Decimal

Start: x is the number to convert
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x      2d x ≥≥≥≥ 2d bit
7=d 230  128   yes    1
6 102    64   yes    1
5 38    32   yes    1
4 6    16     no    0
3 6      8     no    0
2 6      4   yes    1
1 2      2   yes    1
0 0      1     no    01110 0110
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Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x      2d x ≥≥≥≥ 2d bit
141
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Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x      2d x ≥≥≥≥ 2d bit
7=d 141  128   yes    1
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Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x      2d x ≥≥≥≥ 2d bit
7=d 141  128   yes    1
6 13
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Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x      2d x ≥≥≥≥ 2d bit
7=d 141  128   yes    1
6 13    64 no    0
5 13
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Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x      2d x ≥≥≥≥ 2d bit
7=d 141  128   yes    1
6 13    64 no    0
5 13    32     no    0
4 13    16     no    0
3 13
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Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x      2d x ≥≥≥≥ 2d bit
7=d 141  128   yes    1
6 13    64 no    0
5 13    32     no    0
4 13    16     no    0
3 13      8   yes    1
2 5
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Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x      2d x ≥≥≥≥ 2d bit
7=d 141  128   yes    1
6 13    64 no    0
5 13    32     no    0
4 13    16     no    0
3 13      8   yes    1
2 5      4   yes    1
1 1
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Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x      2d x ≥≥≥≥ 2d bit
7=d 141  128   yes    1
6 13    64 no    0
5 13    32     no    0
4 13    16     no    0
3 13      8   yes    1
2 5      4   yes    1
1 1      2     no    0
0 1      1   yes    1
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Another Example

Convert x = 141 to binary …
1. Let d the largest numbers so 2d ≤≤≤≤ x
2. Is d ≥≥≥≥ 0, i.e. more digits to process? No, end
3. Is x ≥≥≥≥ 2d, i.e. is x at least large a 2d?

3t. Y, binary place=1;x=x-2d

3f. N, binary place=0
4. d = d - 1, go to Step 2

Place x      2d x ≥≥≥≥ 2d bit
7=d 141  128   yes    1
6 13    64 no    0
5 13    32     no    0
4 13    16     no    0
3 13      8   yes    1
2 5      4   yes    1
1 1      2     no    0
0 1      1   yes    11000 1101
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Digitizing

“Continuous” information like light and 
sound must be made “discrete”

M
i
c

Digital
to 

Analog

001011101
001101100
000100111
111001010
001101100
100100111
101001010

Analog
to

Digital

S
p
k

Digital audio uses 44,100 
samples per second of 16 
bits on two channels, or 
10,584,000 B/min 
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Information Processing

Manipulating pixels is an example of 
“computing on a representation”

• Photoshop & other graphics SW manipulate 
pictures by computing on representation

• Audio is edited similarly to remove coughs 
and other odd sounds, speed up, etc.

• Searching the dictionary is another 
example

Information processing depends 
on computing on representations
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Bits Are It

Bits represent information, but their 
interpretation gives bits meaning 

0000 0000  1111 0001  0000 1000  0010 0000
• Could be a number, color, instruction, 

ASCII, sound samples, IP address, …

Bias-free Universal Medium Principle: Bits 
can represent all discrete information; 
bits have no inherent meaning
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Summary

Bits can represent any information
∗ Discrete information is directly encoded 

using binary
∗ Continuous information is made discrete
∗ “Computing on representations” is the 

key to “information processing”
∗ Bias-free Universal Medium Principle 


