

Another Example of the Algorithm at Work					
 Use binary search to locate a letter in the alphabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z After M? No 					
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z After G?					
2/22/2002 PTopics-4 © Copyright 2005-2020, University of Washington					

Affer K? PTopics-7 © Cepyright 2000-2002, University of Washir

FIT Another Everyple of the Algorithm et Work
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z After M? No
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z After G? Yes
A B C D E F C H I J K L M N O P Q R S T U V W X Y Z After J? Yes
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z After L? No
A B C D E F G HI J K L M N O P Q R S T U V W X Y Z Affēr K? Yes The Letter is L PTopics-8

How Good is a Particular Algorithm?

- You might think we can't answer this question without programming a computer and trying it.
- Amazingly, it is possible to make very good comparisons between algorithms without programming them!
- Basic idea: estimate the number of "steps" each algorithm needs to solve the problems.
- Computers run at different speeds, but..
 they are all alike enough that the number of steps they need for a particular algorithm doesn't vary by as much as you might think.
- This gives us an abstract, mathematical way to compare the speed of different algorithms

2/22/2002

PTopics-9 © Copyright 2000-2002, University of Washington

FIT 100 Algorithm vs. Program

- v Remember that an algorithm is an abstraction.
- We can apply it, at least mentally, to a variety of situations, even without a computer
- A program incorporates all the details needed for a computer to perform the algorithm
- A program for binary search will encode the algorithm for a specific situation, in a specific language, with specific assumptions

2/22/2002

PTopics-10 © Capyright 2000-2002, University of Washington

Battle of the Algorithms Binary Search: Each question allows you to throw out half of the unexamined items (throw half of the phone book away each time) Linear Search: Each question lets you tear out only one page.

Do The Math for Searching 200 Items				
	linear	binary		
step 0	200 remaining	200		
step 1	199	100		
step 2	198	50		
step 3 see where it's going?	197	25		

PTopics-11 © Copyright 2000-2002, University of Washingt

PT opics-13 © Copyright 2000-2002, University of Washington FIT 100 Trade-Offs

B:

v If we know algorithm A has a better formula than algorithm

Would we ever still want to use algorithm B??

PTopics-14 © Capyright 2000-2002, University of Was hington

FIT 100 Calling A Procedure

- The procedure declaration only specifies how the procedure works and only needs to be given once
- v A procedure call causes the procedure to execute.
- A procedure call can be used anywhere that the task to be performed is needed

Example: The system "calls" cmdOK_Click automatically Surprise: you could call that event handler yourself if you wanted to

Why might you want to?

How would you do it?

2/22/2002

PTopics-17 © Copyright 2000-2002, University of Washington

FIT 100 Mini-Exercise #1	
 What is the value of x after loaded? 	er the form has been
Option Explicit Dim x As Integer	
Private Sub squid() x=x+2 End Sub	
Private Sub Form_Load x=0 Call squid 2/22/End Sub	PTopics-19 © Capright 2003-002, University of Washington

FIT 100 Showing One Date on Request				
2/22/2002 PT cplcs-23 © Copyright 2000-3002, University of Washing	ton			

FIT 100 Make a Prediction	
What is returned by this?	
Mid("Gong Xi Fa Cai", 2, 4)	
Test your prediction on the computer!	
2/22/2002	PTopics-27 © Copyright 2000-2002, University of Washington

