

A simple example	
Envelope 1: ASK 15	
Envelope 2: ASK 13	
Envelope 3: ADD 15 13 10	
Envelope 4: SAY 10	
Envelope 5: NEXT 1	
Envelope 10: ??	
Envelope 13: ??	
Envelope 15: ??	
1/30/2002	CB-7

FIT 100 A simple example	_
Envelope 1: ASK 15	
Envelope 2: ASK 13	
Envelope 3: ADD 15 13 1	
Envelope 4: SAY 10	
Envelope 5: NEXT 1	
Envelope 10: ??	
Envelope 13: ??	
Envelope 15: ??	
1/30/2002	CB-8

FIT 100 The PC's PC

- $\,\,{\rm v}\,$ After the instruction has been fetched and executed, the next instruction in sequence is fetched at PC +1
- This scheme should cause the computer to run through memory executing all instructions once and then "fall off the end of memory"
- Computers have machine instructions to branch and jump, i.e. go to some instruction other than the next
- v Jump and Branch change the PC after increment
- V Ringrams generally repeat many instructions CB-19 © Capyright 2000 2002, University of Wateringto

What's in a Number? A memory location can store one byte of information, enough for a keyboard character

- v A "normal" whole number (integer) uses 4 bytes
- v A machine instruction uses 4 bytes
- $\,{}_{\rm v}\,$ Units of memory size are \ldots
 - 。 KB, kilobyte, 1024 bytes ... just over a thousand bytes, a "K"
 - MB, megabyte, 1,048,576 bytes ... just over a million bytes, a meg
 - GB, gigabyte, 1, 073, 741, 824 bytes ... just over a billion bytes, a "gig"

 TB, terabyte, 1,099,511,627,776 bytes ... just over a trillion bytes (130/2002

© Capyright 2000-2002, University of Washington

© Copyright 2000-2002, University of Washington

© Copyright 2000-2002, Un