Database Dictionary

Provided by GeekGirls.com
http://www.geekgirls.com/database_dictionary.htm

database: A collection of related information stored in a structured format. Database is
sometimes used interchangeably with the term table. Technically, they’re different: A table
is a single store of related information; a database can consist of one or more tables of
information that are related in some way. For instance, you could track all the information
about the students in a school in a students table. If you then created separate tables
containing details about teachers, classes and classrooms, you could combine all four tables
into a timetabling database. Such a multi-table database is called a relational database.

data entry: The process of getting information into a database, usually done by people
typing it in by way of data-entry forms designed to simplify the process.

dbms: Database management system. A program which lets you manage information in
databases. Lotus Approach, Microsoft Access and FileMaker Pro, for example, are all
DBMSs, although the term is often shortened to ‘database’. So, the same term is used to
apply to the program you use to organize your data and the actual data structure you
create with that program.

field: Fields describe a single aspect of each member of a table. A student record, for
instance, might contain a last name field, a first name field, a date of birth field and so on.
All records have exactly the same structure, so they contain the same fields. The values in
each field vary from record to record, of course. In some database systems, you’ll find fields
referred to as attributes.

flat file: A database that consists of a single table. Lightweight database programs such
as the database component in Microsoft Works are sometimes called ‘flat-file managers’ (or
list managers) because they can only handle single-table databases. More powerful
programs, such as FileMaker Pro, Access, Approach and Paradox, can handle multi-table
databases, and are called relational database managers, or RDBMSs.

foreign key: A key used in one table to represent the value of a primary key in a related
table. While primary keys must contain unique values, foreign keys may have duplicates.
For instance, if we use student ID as the primary key in a Students table (each student has
a unique ID), we could use student ID as a foreign key in a StudentCourse table: as each
student may do more than one course, the student ID field in the StudentCourse table
(often shortened to StudentCourse.student ID) will hold duplicate values.

index: A summary table which lets you quickly look up the contents of any record in a
table. Think of how you use an index to a book: as a quick jumping off point to finding full
information about a subject. A database index works in a similar way. You can create an
index on any field in a table. Say, for example, you have a customer table which contains
customer numbers, names, addresses and other details. You can make indexes based on
any information, such as the customers’ customer number, last name + first name (a
composite index based on more than one field), or postal code. Then, when you're
searching for a particular customer or group of customers, you can use the index to speed


http://www.geekgirls.com/database_dictionary.htm

up the search. This increase in performance may not be noticeable in a table containing a
hundred records; in a database of thousands of records it will be a blessing.

key field: You can sort and quickly retrieve information from a database by choosing one
or more fields to act as keys. For instance, in a students table you could use a combination
of the last name and first name fields (or perhaps last name, first name and birth dates to
ensure you identify each student uniquely) as a key field. The database program will create
an index containing just the key field contents. Using the index, you can quickly find any
record by typing in the student’s name. The database will locate the correct entry in the
index and then display the full record.

Key fields are also used in relational databases to maintain the structural integrity of your
tables, helping you to avoid problems such as duplicate records and conflicting values in
fields (see primary key and foreign key).

normalization: The process of structuring data to minimize duplication and inconsistencies.
The process usually involves breaking down a single table into two or more tables and
defining relationships between those tables. Normalization is usually done in stages, with
each stage applying more rigorous rules to the types of information which can be stored in a
table. While full adherence to normalization principles increases the efficiency of a particular
database, the process can become so esoteric that you need a professional to create and
understand the table design. Most people, when creating a database, don’t need to go
beyond the third level of normalization, called third normal form. And there’s no need to
know the terminology: simply applying the principles is sufficient.

The first three levels in normalizing a database are:
First Normal Form (1NF): There should be no repeating groups in a table.
For example, say you have a students table with the following structure:

student ID

name

date of birth
advisor

advisor’s telephone
student

course ID 1

course description 1
course instructor 1
course ID 2

course description 2
course instructor 2

The repeating course fields are in conflict with first normal form. To fix the problems created
by such repeating fields, you should place the course information in a separate course table,
and then provide a linking field (most likely student ID) between the students table and the
course table.



Second Normal Form (2NF): No non-key fields may depend on a portion of the primary
key.

For example, say we create a course table with the structure:

student ID

course ID

course description
course instructor

We can create a unique primary key by combining student ID + course ID (student ID is not
unique in itself, as one student may take multiple courses; similarly, course ID is not unique
in itself as many students may take the same course; however, each student will only be
taking a particular course once at any one time, so the combination of student ID + course
ID gives us a unique primary key).

Now, in 2NF, no non-key fields (course description, course instructor) may depend on a
portion of the primary key. That, however, is exactly what we have here: the course
instructor and course description are the same for any course, regardless of the student
taking the course.

To fix this and put the database in second normal form, we create a third table, so our
database structure now looks like this (with key fields in italics):

Student table

student ID

name

date of birth
advisor

advisor’s telephone

Student courses table

student ID
course ID

Courses table

course ID
course description
course instructor

Third Normal From (3FN): No fields may depend on other non-key fields. In other words,
each field in a record should contain information about the entity that is defined by the
primary key.

In our students table, for example, each field should provide information about the
particular student referred to by the key field, student ID. That certainly applies to the
student’s name and date of birth. But the advisor’'s name and telephone doesn’t change



depending on the student. So, to put this database in third normal form, we need to place
the advisor’s information in a separate table:

Student table
student ID
name

date of birth
advisor ID

Student courses table

student ID
course ID

Courses table

course ID
course description
course instructor

Advisor table

advisor ID
advisor name
advisor telephone

primary key: A field that uniquely identifies a record in a table. In a students table, for
instance, a key built from last name + first name might not give you a unique identifier (two
or more Jane Does in the school, for example). To uniquely identify each student, you might
add a special Student ID field to be used as the primary key.

query: A view of your data showing information from one or more tables. For instance,
using the sample database we used when describing normalization, you could query the
Students database asking "Show me the first and last names of the students who take both
history and geography and have Alice Hernandez as their advisor" Such a query displays
information from the Students table (firsthname, lastname), Courses table (course
description) and Advisor table (advisor name), using the keys (student ID, course ID,
advisor ID) to find matching information.

rdbms: Relational database management system. A program which lets you manage
structured information stored in tables and which can handle databases consisting of
multiple tables.

record: A record contains all the information about a single ‘member’ of a table. In a
students table, each student’s details (name, date of birth, contact details, and so on) will
be contained in its own record. Records are also known as tuples in technical relational
database parlance.



relational database: A database consisting of more than one table. In a multi-table
database, you not only need to define the structure of each table, you also need to define
the relationships between each table in order to link those tables correctly.

report: A form designed to print information from a database (either on the screen, to a file
or directly to the printer).

SQL: Structured Query Language (pronounced sequel in the US; ess-queue-ell elsewhere).
A computer language designed to organize and simplify the process of getting information
out of a database in a usable form, and also used to reorganize data within databases. SQL
is most often used on larger databases on minicomputers, mainframes and corporate
servers.

table: A single store of related information. A table consists of records, and each record is
made up of a number of fields. Just to totally confuse things, tables are sometimes called
relations. You can think of the phone book as a table: It contains a record for each
telephone subscriber, and each subscriber’s details are contained in three fields - name,
address and telephone.



