

Remember ...

- Digital data is discrete: unambiguous and exact - lt's either "on" or "off"
- With one piece of data (e.g. a light switch), you can represent 2 pieces of information
口 "On" or "Off" - even when you use a dimmer switch!!!
- We call a single piece of data with 2 states a bit.
- If we look at a bunch of bits at the same time, we can represent more pieces of information.

BITS	Number of Pieces of Information	Examples
1	2	0, 1
2	4	00, 01, 10, 11
3	8	000, 001, 010, $011, \ldots$

Some Information is Discrete: Character Encodings

- Review:
\square Keyboard characters are encoded into a byte or two \square ASCII is one of many encoding of the characters - What does ASCII stand for?
\square A byte (8 bits) permits 256 things to be represented

Digital Data

- Digital samples capture the basic structure of analog data, but it can be inaccurate due to limited precision

Bits as a Medium

- The way that bits represent information is determined by how we interpret the bits

- As separate byte these are: $106,165,146$
- As ASCII these bytes are: p, \neq,
- As a 24 bit integer these bytes are: 6,989,202
- As a color value these bytes are: \qquad
- Bytes can be interpreted in an unlimited number of
ways

"

Bits as a Medium

- What does this string of bits represent?

Summary

- Digital representation can be faithfully replicated an transmitted
- It's common to "compute" on a digital representation
- The binary digits (bits) 0 and 1 are a natural way to interpret the presence or absence of a phenomenon
- Bits are bits-what they mean depends on how we interpret their meaning... sometimes they are numbers, sometimes letters, sometimes sound, sometimes color,

