,
 Digital Representation of Information: Bits and Bytes and ...

Digital encoding of information means the data is stored - "saved" - in discrete units. Most often, that means numbers.
Text is represented using one byte for each of the keyboard characters

F

Digitization: It's all in the hands

- Definition from OED:
\square To convert into a sequence of digits, generally for use in a digital computer.
\square To represent in digital form
- Why use digits for numbers like your SSN?
\square We don't use the numeric properties of the digits
\square We only need to know the SEQUENCE of the digits for pressing buttons, or writing them out
\square We use them because digits are familiar to us, and they have short names
- The truth is we could use ANY standard set of symbols to represent people or things.
© Copyright 2002-20033, University of Wastington

\#
 Do you ever feel like you're just a

number...?

- We are represented numerically in many different ways:
\square SSN, Phone Number, Student number
- Things are also represented numerically in many different ways:
-ISBN's and VIN's - Vehicle Identification Number
- This representation is a way to convey information about us, about things, without actually having those things in hand. But we don't do any arithmetic with those numbers, so WHY use numbers?

Patterns to Symbols

- A die's patterns can make symbols
\square Use the pattern once: 6 symbols

\square Use the patterns in pairs: 36 symbols

\square Use patterns in triples: $6 \times 6 \times 6=216$
\square In general, one uses m patterns in sequences of n : m^{n}

$\square \square$
 Fundamental Display of Information

- Fundamental pattern (PandA): Information is most commonly identified by a presence or absence of a phenomenon at a specific place and time
\square It's either there or it isn't : Lights, water, magnetism, checkboxes.
\square The states MUST be discrete: distinguishable and unambiguous
\square When dealing with the computers, the states represent one bit of information
- Short for binary digit

Bits and Bytes

- It's customary to name the two possible patterns of a bit 1 and 0 , but we could use any names to represent the 2 distinct patterns
- Sequences of 8 bits create a byte
- A byte is two patterns in sequences of $8 \ldots$ $\mathrm{m}=2, \mathrm{n}=8,2^{8}=256$ possibilities from 00000000 to 11111111
- The two pattern options (1 or 0) naturally fall to the term binary for this representation

Names for Patterns	
Present	Absent
On	Off
Yes	No
1	0
True	False
+	-
Black	White
For	Against
Yin	Yang
KEN	BARbie

Embellishing Text

- Text often has to have specific properties for display \square Specific fonts, italics, etc.
- To distinguish the text from the modifiers that describe its properties, tag the modifiers
\square A tag is a text string, <tag> or </tag>, that modifies text
- <p> Paragraph</p>, BOLD TEXT
\square Pairs of tags surround the tagged text, e.g. <title>Gone with the Wind</title>
\square The "opening" and "closing" tags differ with the addition of the slash to indicate a close
\square Not all tags have a "match"
- <hr>

"

Embellishing Text (cont'd)

- Software interprets the tags when the text is being processed on your computer
- With HTML this indicates how content is printed or displayed on a web page
- But, there are other ways that tags are used:
\square To define structure of content (often called metadata: data about data)
- SGML-the grandfather of markup languages
- XML-the newest markup language to separate structure from content

"

Understanding the Concepts

- Pretend you have a 10 -year-old sister and that you'll be going home for the weekend. She tells you that she learned long division in school this week and asks what you learned this week. Tell her you learned about digital representation and explain this concept to her.
- Complete this activity with a partner. Spend 3-5 minutes in discussion
- When you are done discussing, each of you should write a description of digital representation to your 10 -year-old sister on a piece of paper.

\%			
Decimal and Binary			
	Decimal	Binary	
Symbols:	0, 1, ... 9	0,1	Binary works just like decimal except
Base	10	2	the base is 2
Number xyz	$x \cdot 10^{2}+\mathrm{y} \cdot 10^{1}+\mathrm{z} \cdot 10^{0}$	x.2 ${ }^{2}$	$+y \times 2^{1+z *} 2^{0}$
Example: 159	$1 \cdot 10^{2}+5 \times 10^{1+9}$ * 10^{0}	$1 \cdot 2^{2}$	+ $5 \cdot 2^{1}+9 \cdot 2^{0}$
Powers	1, 10, 100, 1000, ...	1,2,	, $8,16,32,64 .$.
Give the actual numbers for: 00001000,00001010			
	$2_{x^{2}}^{23+1} \mid$		
	$\frac{22^{\text {a }}}{}$		
	2°		

[^0]
[^0]: "

 ## Summary of Digital Representation

 - Use of patterns to create symbols, symbols are then used to discretely represent information
 \square Numbers are not required, but are often used for convenience
 - The binary digits (bits) 0 and 1 are a natural way to interpret the presence or absence of a phenomenon \square But they are just one method
 - Bytes are composed of 8 bits, ASCII represents text as one character per byte
 - Binary numbers and arithmetic are like decimal arithmetic, except they are limited to the two numerals 0 and 1
 - Tags are used to insert modifiers into text and keep it separated from the text

