

Cryptography is much more than...

- Straight encoding and decoding
 - □ Usually a one for one representation of one character or datum for another
 - $\square \ \text{Morse Code}$
 - □ ASCII conversion
- Common characteristics of normal encoding
 No secret formula used to convert data
 - □ Just a straight forward processing of data

© Copyright 2002-2003, University of Washington

Copyright 2002-2003, University of Washington

What is Cryptography, exactly? "The art or science of keeping messages secure [using mathematics]." -*Applied Cryptography* Cryptography is the study of encryption and decryption methods These methods usually involve very intense, high level math Cryptography relies on keeping some piece of the information (the key) secret

Why Cryptography? (cont'd)

- Can be applied to any kind of electronic data:
 - □ Text
 - □ Audio
 - □ Video
 - Images
- Can be used real-time or for storage of data

╺

Two Main Types of Cryptography

Secret Key

- □ Single key for encryption and decryption
- □ Caesar ciphers, cryptograms
 - Phone Book pages....
- □ One-for-one letter substitution (agreed on before hand)
- Public Key
 - □ Two keys (mathematically related) to lock and unlock data
 - Private key: Don't share!
 - □ Public key: no secrecy

© Copyright 2002-2003, University of Washington

48

Secret Key Algorithms and Uses

- Data Encryption Standard (DES)
- Triple DES
- Advanced Encryption Standare (AES)
- Others: IDEA, Blowfish, etc.
- Applications using them:
 - UW's SSH Client encrypts to protect passwords
 Logging in for secure file transfers and email usage

Copyright 2002-2003, University of Washington

	-
	1
How does RSA work?	
 Receiver set up: Choose a couple large prime numbers (200 digits or more), p and q (make sure both are 2 larger than a multiple of 3) 	
□ Multiply p and q to get n n=p*q	
□ Receiver also computes s s=(1/3)(2(p-1)(q-1) +1)	
 □ n is your public key: publish it Keep p, q and s private 	
③ Copyright 2002-2003, University of Washington	

How does RSA work? (cont'd)

- Sender obtains public key (n) and encrypts message:
 Convert message into chunks (multiple byte chunks)
 - □ Translate each chunk into an integer, m
 - □ Now, it gets a little tricky.....
 - Divide m^{a} by n and the remainder is your encrypted text, call it E \quad E= m^{a}/n
- Receiver decrypts message:

□ Divide E^S by n and the remainder is your clear text, or original message integer, m which can now be converted back to the appropriate letter: C= E^S/n

Remember, s was not given out and is only known by the receiver!

Copyright 2002-2003, University of Washington

₽₽ Some Public Key Algorithms and Uses RAS (Rivest, Shamir, Adelman) DSA (Digital Signature Algorithm) Applications using them: Email □ Financial Transactions □ Browsers □ Mobile Telecommunications □ E-voting □ DVD encryption □

© Copyright 2002-2003, University of Wash

Unbreakable code: Pros and Cons

 So, if crypto systems using algorithms like RSA and others are now virtually unbreakable

□ Do we have total security?

- □ Privacy?
- □ Integrity?
- □ For WHO?
 - When is the unbreakable code good? Bad?

Copyright 2002-2003, University of Washingto

