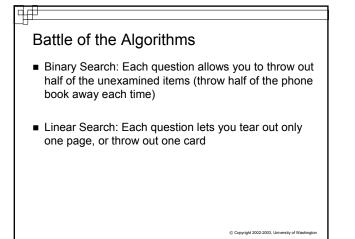



# Searching A List

- If there's no order to the list (like the deck of cards)...
   best you can do is start at the beginning
   This is called sequential or linear search
- Binary search is a simple, common sense way to search through an *ordered* set of items.
  - □ Questions, often referred to as queries or probes, are asked to *find if the desired item is smaller or larger.*
  - □ If the question is chosen from the middle of the sequence, ½ the possibilities are eliminated with each answer.
  - □ It's a bit like 20 questions, but MUCH more specific.

© Copyright 2002-2003, University of Washington

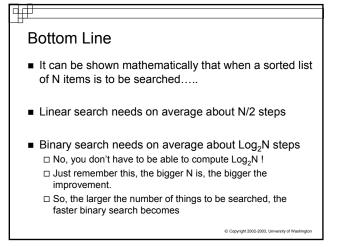

# How Good is a Particular Algorithm? You might think we can't answer this question without programming a computer and trying it. Amazingly, it is possible to make very good comparisons between algorithms without programming them! Basic idea: estimate the number of "steps" each algorithm needs to solve the problems. This gives us an abstract, mathematical way to

 This gives us an abstract, mathematical way to compare the speed of different algorithms

© Copyright 2002-2003, University of Washingto

## Algorithm vs. Program

- Remember that an algorithm is an abstraction.
- We can apply it, at least mentally, to a variety of situations, even without a computer
- A program incorporates all the details needed for a computer to perform the algorithm
- A program for search will encode the algorithm for a specific situation, in a specific language, with specific assumptions




## ₽₽

# Do The Math for Searching 200 Items

|                                    | linear        | binary |
|------------------------------------|---------------|--------|
| step 0                             | 200 remaining | 200    |
| step 1                             | 199           | 100    |
| step 2                             | 198           | 50     |
| step 3<br>see where it's<br>going? | 197           | 25     |

© Copyright 2002-2003, University of Washington



# Trade-Offs

 If we know algorithm A has a better formula than algorithm B:

Would we ever still want to use algorithm B??

Copyright 2002-2003, University of Washington

| $^+$ Searching a small set of things: 20                                                |              |        |  |
|-----------------------------------------------------------------------------------------|--------------|--------|--|
|                                                                                         | linear       | binary |  |
| step 0                                                                                  | 20 remaining | 20     |  |
| step 1                                                                                  | 19           | 10     |  |
| step 2                                                                                  | 18           | 5      |  |
| step 3<br>Could you tell the<br>difference in time if a<br>computer does the<br>search? |              | 3      |  |