
© Copyright 2000-2001, University of Washington

Functions (also referred to as procedures) are a part of our
everyday lives. Individuals and organizations utilize them as a

way to assure that a task is performed in a thorough and
predictable manner each time it is needed.

Computers also use functions in this manner. Functions encode
the operations needed to accomplish a task. In other words,

functions encode algorithms.

Functions

© Copyright 2002-2003, University of Washington

Importance of Functions

� Functions encapsulate functionality ☺ (useful
instruction) so that it can be used anywhere, anytime.

� Functions help manage complexity

� If you find yourself writing the same code statements multiple
times in your program, this is a good indication that you need
a function to minimize the amount of code.

� Functions also clean up your code by placing them all in one
area to leave the rest of the HTML/script clean.

© Copyright 2002-2003, University of Washington

Remember Friday’s Program?
� Friday we coded up a simple program to test if a

number entered was positive, negative or zero

� All the code was put in the event handler, onClick
� That is OK, but very messy-especially if onClick is handling a

LOT of instructions
� We could have encapsulated that code elsewhere and called

it when needed
� All the program needs to send when calling that function is

the number entered by the user and all the instructions could
be run.

© Copyright 2002-2003, University of Washington

A Simple Scenario
� We use email every day to send mail to friends in the

state, across the country or around the world.

� You receive mail from your friend in Australia telling
you it’s 30o

� The temperature is Celsius, but you want Fahrenheit

� You could do a quick calculation, but since you write
to this person a lot, it would be better to just write a
little function to do the calculation every time.

© Copyright 2002-2003, University of Washington

Structure Of A Function
� Functions encapsulate (package up) a computation to

be used anywhere, anytime

� Functions have the following features:
� Name: term used to refer to the task the function performs,

example: convertC2F

� Definition: The steps that will accomplish the task. Also
known as the body of the function

f = (9*c) / 5 + 32

� Parameters: the data to be used by the function-the inputs
� Parameters can be values, variables or object properties

� Declaration: the entire package of the name, definition and
parameters

© Copyright 2002-2003, University of Washington

The Whole Function Package
� Function Declaration: Includes name, definition and

parameters

function convertC2F (c)
{
var f;
f = (9 * c) / 5 + 32;
return f;
}

Function Name

Formal Parameters

Function Definition
Why is this line here?

© Copyright 2002-2003, University of Washington

You’ve already seen Functions!

� Event Handlers are like pre-built function
declarations
� The event handling routine that we filled with code on

Friday was a type of function

� They just wait for programmers to add instructions to be
executed

� Instead of being called in the code, they are called every
time a user activates that particular event

© Copyright 2002-2003, University of Washington

Calling A Function
� The function declaration specifies how the function

works and only needs to be given once

� The function call says when, where and with what
values the function will be performed (executed)
� A function call can be used anywhere that the task to be

performed is needed.

function ConvertC2F (c) {
var f;
f = (9 * c) / 5 + 32;
return f;

}

… onClick=“ConvertC2F (document.stinky.number.value)” ……

© Copyright 2002-2003, University of Washington

Methods are built-in Functions
� All methods are pre-defined program statements to

be run when called.
� The only difference is that you don’t have to define the

method, just call it when needed
document.write(“Hello World”);
document.write(d.getDate());
prompt(“What is your name?”, “Enter name here”)
alert(“Wrong answer!!!!!”)

� You just provide the name of the function and
arguments:
� The name is the combination of the object and method

with arguments in parenthesis
© Copyright 2002-2003, University of Washington

Variables: Global vs. Local
� Variables are used all over in programs

� Most variables declared can be referenced anywhere
in the program
� There values can be changed from anywhere
� They are global

� However, variables given as formal parameters or
declared inside a function, are local
� They only exist inside the function and can’t be changed or

referenced from elsewhere in the program
� This means you can reuse variable names created in

functions without name conflicts.
� Just make sure you have no global variables with the same

name

© Copyright 2002-2003, University of Washington

Parameter Correspondence
� The arguments name the input values and the

function then can output results

� The number of formal parameters in the declaration
must match the number of arguments in the call, and
they correspond one-to-one

function ConvertC2F (c) {
var f;
f = (9 * c) / 5 + 32;
return f;
}

onClick = “answertextbox = ConvertC2F (document.stinky.number.value)”

© Copyright 2002-2003, University of Washington

What Happens…
� A function call “makes it happen”…
� Substitution Rule: The function call operates as if the

function definition replaces the call and the arguments
replace the parameters

…

onClick =“answertextbox = ConvertC2F (document.stinky.number.value)”

Code of the Program

function ConvertC2F (c) {
var f;
f = (9 * c) / 5 + 32;
return f;
}

Is the same as:

onClick = “answertextbox = 9*(document.stinky.number.vaue) / 5 +32”

© Copyright 2002-2003, University of Washington

Calling the convertC2F Function

<FORM NAME="conversion" ACTION="convertC2F.html" >
<H2>Enter the temperature in Celsius:
<INPUT TYPE="text" NAME="celsius" VALUE=" " ></H2>
<INPUT TYPE="button" NAME="change" VALUE="Change to
Celsius” onClick = ‘document.conversion.fahrenheit.value =
convertC2F(document.conversion.celsius.value)’>

<H2>That's
<INPUT TYPE="text" NAME="fahrenheit" VALUE="???" SIZE=10
> degrees Fahrenheit</H2>

</FORM>

<HEAD><script type="text/javascript">
<!—
function convertC2F(c)
{

var f = (9*c)/ 5 + 32
return f;

}
//-->
</script></HEAD>

© Copyright 2002-2003, University of Washington

Function Abstraction
� Whenever the same operations are performed in

different places in a program, there is an opportunity
for function abstraction

� Function abstraction gives a name to the operations

� It also encapsulates the operations so they can be
executed out-of-view, receiving input via parameters
and returning results or creating effects at the point of
the call

© Copyright 2002-2003, University of Washington

Summary
� Function declarations encapsulate name, parameters

and definition

� Function calls cause the function to be executed

� Arguments must match formal parameters in number
and order
� Order matters!

� The 1st argument corresponds to the 1st formal parameter
� The 2nd argument corresponds to the 2nd formal parameter

� The Substitution Rule defines how functions work

