
© Copyright 2000-2001, University of Washington

Functions (also referred to as procedures) are a part of our
everyday lives. Individuals and organizations utilize them as a

way to assure that a task is performed in a thorough and
predictable manner each time it is needed.

Computers also use functions in this manner. Functions encode
the operations needed to accomplish a task. In other words,

functions encode algorithms.

Functions

© Copyright 2002-2003, University of Washington

Importance of Functions

Functions encapsulate functionality ☺ (useful
instruction) so that it can be used anywhere, anytime.

Functions help manage complexity

If you find yourself writing the same code statements multiple
times in your program, this is a good indication that you need
a function to minimize the amount of code.

Functions also clean up your code by placing them all in one
area to leave the rest of the HTML/script clean.

© Copyright 2002-2003, University of Washington

Remember Friday’s Program?
Friday we coded up a simple program to test if a
number entered was positive, negative or zero

All the code was put in the event handler, onClick
That is OK, but very messy-especially if onClick is handling a
LOT of instructions
We could have encapsulated that code elsewhere and called
it when needed
All the program needs to send when calling that function is
the number entered by the user and all the instructions could
be run.

© Copyright 2002-2003, University of Washington

A Simple Scenario
We use email every day to send mail to friends in the
state, across the country or around the world.

You receive mail from your friend in Australia telling
you it’s 30o

The temperature is Celsius, but you want Fahrenheit

You could do a quick calculation, but since you write
to this person a lot, it would be better to just write a
little function to do the calculation every time.

© Copyright 2002-2003, University of Washington

Structure Of A Function
Functions encapsulate (package up) a computation to
be used anywhere, anytime

Functions have the following features:
Name: term used to refer to the task the function performs,

example: convertC2F

Definition: The steps that will accomplish the task. Also
known as the body of the function

f = (9*c) / 5 + 32

Parameters: the data to be used by the function-the inputs
Parameters can be values, variables or object properties

Declaration: the entire package of the name, definition and
parameters

© Copyright 2002-2003, University of Washington

The Whole Function Package
Function Declaration: Includes name, definition and
parameters

function convertC2F (c)
{
var f;
f = (9 * c) / 5 + 32;
return f;
}

Function Name

Formal Parameters

Function Definition
Why is this line here?

© Copyright 2002-2003, University of Washington

You’ve already seen Functions!

Event Handlers are like pre-built function
declarations

The event handling routine that we filled with code on
Friday was a type of function

They just wait for programmers to add instructions to be
executed

Instead of being called in the code, they are called every
time a user activates that particular event

© Copyright 2002-2003, University of Washington

Calling A Function
The function declaration specifies how the function
works and only needs to be given once

The function call says when, where and with what
values the function will be performed (executed)

A function call can be used anywhere that the task to be
performed is needed.

function ConvertC2F (c) {
var f;
f = (9 * c) / 5 + 32;
return f;

}

… onClick=“ConvertC2F (document.stinky.number.value)” ……

© Copyright 2002-2003, University of Washington

Methods are built-in Functions
All methods are pre-defined program statements to
be run when called.

The only difference is that you don’t have to define the
method, just call it when needed

document.write(“Hello World”);
document.write(d.getDate());
prompt(“What is your name?”, “Enter name here”)
alert(“Wrong answer!!!!!”)

You just provide the name of the function and
arguments:

The name is the combination of the object and method
with arguments in parenthesis

© Copyright 2002-2003, University of Washington

Variables: Global vs. Local
Variables are used all over in programs

Most variables declared can be referenced anywhere
in the program

There values can be changed from anywhere
They are global

However, variables given as formal parameters or
declared inside a function, are local

They only exist inside the function and can’t be changed or
referenced from elsewhere in the program
This means you can reuse variable names created in
functions without name conflicts.
Just make sure you have no global variables with the same
name

© Copyright 2002-2003, University of Washington

Parameter Correspondence
The arguments name the input values and the
function then can output results

The number of formal parameters in the declaration
must match the number of arguments in the call, and
they correspond one-to-one

function ConvertC2F (c) {
var f;
f = (9 * c) / 5 + 32;
return f;
}

onClick = “answertextbox = ConvertC2F (document.stinky.number.value)”

© Copyright 2002-2003, University of Washington

What Happens…
A function call “makes it happen”…
Substitution Rule: The function call operates as if the
function definition replaces the call and the arguments
replace the parameters

…

onClick =“answertextbox = ConvertC2F (document.stinky.number.value)”

Code of the Program

function ConvertC2F (c) {
var f;
f = (9 * c) / 5 + 32;
return f;
}

Is the same as:

onClick = “answertextbox = 9*(document.stinky.number.vaue) / 5 +32”

© Copyright 2002-2003, University of Washington

Calling the convertC2F Function

<FORM NAME="conversion" ACTION="convertC2F.html" >
<H2>Enter the temperature in Celsius:
<INPUT TYPE="text" NAME="celsius" VALUE=" " ></H2>
<INPUT TYPE="button" NAME="change" VALUE="Change to
Celsius” onClick = ‘document.conversion.fahrenheit.value =
convertC2F(document.conversion.celsius.value)’>

<H2>That's
<INPUT TYPE="text" NAME="fahrenheit" VALUE="???" SIZE=10
> degrees Fahrenheit</H2>

</FORM>

<HEAD><script type="text/javascript">
<!—
function convertC2F(c)
{

var f = (9*c)/ 5 + 32
return f;

}
//-->
</script></HEAD>

© Copyright 2002-2003, University of Washington

Function Abstraction
Whenever the same operations are performed in
different places in a program, there is an opportunity
for function abstraction

Function abstraction gives a name to the operations

It also encapsulates the operations so they can be
executed out-of-view, receiving input via parameters
and returning results or creating effects at the point of
the call

© Copyright 2002-2003, University of Washington

Summary
Function declarations encapsulate name, parameters
and definition

Function calls cause the function to be executed

Arguments must match formal parameters in number
and order

Order matters!
The 1st argument corresponds to the 1st formal parameter
The 2nd argument corresponds to the 2nd formal parameter

The Substitution Rule defines how functions work

