

Digital encoding of information means the data is stored in discrete units -- effectively numbers. Once we have digital date, we can use it to represent any form of digital media.

FIT
 100
 Recall from Monday's Lecture...

* Digital data is discrete - either "on" or "off"
* With 1 piece of data (e.g., a light switch), you can represent 2 pieces of information (e.g., the light is either "on" or "off").
* We call a single piece of data with two states a bit.
* If we look at a bunch of bits at the same time, we can represent more pieces of information.

BITS	NUMBER OF PIECES OF INFORMATION	EXAMPLES
1	2	0, 1
2	4	00, 01, 10, 11
3	8	000, 001, 010

FIT
 100 Encoding The Number

* Information is often stored by charge or magnetic field
 Schematic diagram of magnetic spots, say on a disk
* Its presence or absence can be detected, leading to a natural association with 1 and 0 to the states, motivating the use of binary numbers

Binary is counting on your fists instead of your fingers

Some Information is Discrete:

FIT Character Encodings

* Keyboard characters are encoded into a byte or two
* ASCII is one of many encodings of the characters
* A byte (8 bits) permits 256 things to be represented

ASCII, pronounced AS.key, stands for American Standard Code for Information Interchange

FIT
 100
 But Not All Information is Discrete...

* The physical world is analog -- sound comes from pushing air with a certain energy at a certain rate, etc
* By measuring a phenomenon one derives a value (number) of the phenomenon at that moment
* Sampling -- taking many measurements at uniform intervals -- gives a series of numbers, the digital form

Digital audio: 44,100 sample/s 2 bytes/sample 2 channels, L\&R 176,400 B/s $635 \mathrm{MB} /$ hour

FIT
 100 Digital Data

* Digital samples capture the basic structure of analog data, but it can be inaccurate due to limited precision

* Or sampling rate

FIT
 100 Two Advantages of Digital Data

* A computer can "compute on" digital data, enhancing it to remove noise, artifacts of imprecision, etc.

* Digital data can be transmitted and replicated exactly
- The numbers are the complete representation of data
- Assuring each number is duplicated or transmitted accurately, means the data is exact

FIT
 100
 Picture Elements (Pixels)

* The phosphor on the screen naturally displays the on/off property of binary
- Suitable for one color (B\&W) video
- The bits in memory are streamed out on the screen in "raster" order, like a standard TV

* For a color display, three (basic) colors of light must be displayed: red, green and blue (RGB)
- Requires three different numbers, e.g. one byte each
- Range of colors is determined by the intensity of each component
- When all three values are at their maximum, the color is white, and when they are at their minimum the color is black

FIT
 Color Control

* Select the color palette from an application and play
* Notice when values are equal -- gray results

FIT
 100 Bits As A Medium

* Question: What does this string of bits represent?

FIT
 100
 Bits As A Medium

* The way that bits represent information is determined by how we interpret the bits ...

* As separate bytes these are: 104, 181, 56
* As ASCII these bytes are: h,, 7
* As a 24 bit integer these bytes are: 6,862,136
* As a color value the bytes are
* The bytes can be interpreted in an unlimited number of ways

FIT
 100 Summary

* Digital representation can be faithfully replicated and transmitted
* It's common to "compute" on a digital representation
* The binary digits (bits) 0 and 1 are a natural way to interpret the presence or absence of a phenomenon
* Binary numbers and arithmetic are like decimal except the are limited to the two numerals 0 and 1
* Bits are bits -- what they mean depends on how we interpret their meaning ... sometimes they are numbers, sometimes letters, sometimes sound, sometimes color, ...

