Digital Representation of Information

FIT
 100

Digital encoding of information means the data is stored in discrete units -- effectively numbers. Text is represented using one byte for each of the keyboard characters

FIT

100

Phone Numbers, SSNs, ISBNs, ..

* Dictionary says "digitize" means represent something using the ten decimal digits ... its more general
* Why use digits for phone numbers?
+ Numerical properties unimportant
+ Must only specify the sequence for pressing buttons
+ Digits are familiar, have short names
* Adopt any symbols and relabel the buttons

FIT
 100 Patterns to Symbols

* A die's patterns can make symbols
- Use pattern once: 6 symbols $\bullet \bullet \bullet \bullet: \because: \because$
- Use pattern in pairs: $6 \times 6=36$ symbols

- Use pattern in triples: $6 \times 6 \times 6=216$
- In general, using m patterns in sequences of n : m^{n}
* Fundamental pattern (PandA): The presence or absence of a phenomenon at a specific place/time
- It's there or not -- Light: on/off, Water: flow/still, \square 㒁 Magnetism: charged/neutral, Checkbox marked/empty, Door: closed/open, ...
- The states must be discrete -- distinguishable, unambiguous
- The two states represent one bit of information

FIT
 100 Representing Information

* Keyboard characters can be represented exactly
* Imagine you and your friend are prohibited from talking -- its too noisy? -- and so you use dice to encode the letters and punctuation to communicate

© 2001, University of Washington

FIT
 100
 Bits and Bytes

* It's customary to name the two possible patterns of a bit 1 and 0 , though any names would be OK
* Sequences of 8 bits create a byte
* Two patterns in sequences of $8 \ldots$ $\mathrm{m}=2, \mathrm{n}=8,2^{8}=256$ possibilities from 00000000 through 11111111
* The two pattern alternatives motivate the term binary for this representation

Names for Patterns	
Present	Absent
On	Off
Yes	No
1	0
True	False
+	-
Black	White
For	Against
Yin	Yang
Lisa	Bart

FIT
 100 Character Representations

* Keyboard characters are encoded into a byte or two
* ASCII is one of many byte encodings of characters

ASCII	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	0 0 1 1 0		$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	0 1 0 0			$\begin{aligned} & \hline 0 \\ & 1 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline 0 \\ 1 \\ 1 \\ 1 \\ \hline \end{array}$	1 0 0 0		1 0 0 1	1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	1 1 0 1 1	1	1 1 1 1
0000	4	s_{H}	5		5_{5}	E_{T}		。	k	E_{2}	E_{5}		${ }_{4}$	$\stackrel{L}{F}$	${ }_{\text {T }}$	${ }^{\text {F }}$	\circ_{R}	5_{0}	s_{1}
0001	${ }^{\circ}$	D_{1}	-		0_{3}	0_{4}	"		q	E_{B}	O		${ }_{\text {in }}$	${ }_{5}$	E_{0}	Fs_{5}	${ }_{5}$	R_{5}	vs_{5}
0010		!			\#	\$		\%	\&	'	()	*	+	,	-		1
0011	0	1			3	4			6	7	8		9	:	;	<	=	>	?
0100	@	A			C	D			F	G	H		I	J	K	L	M	N	0
0101	P	Q			S	T		J	V	W	X		Y	Z	[1]	\wedge	-
0110		a			c	d			f	g	h		i	1	k	1	m	n	0
0111	p	q			s	t		1	v	w	z		y	z	(1	\}	~	${ }^{\circ}$
1000	s_{0}	s_{1}			${ }_{3}$	${ }^{\text { }}$	"	2	5_{5}	E_{5}	${ }^{\text {H }}$		${ }_{5}$	${ }_{s}$	P_{0}	${ }^{\circ}$	R_{T}	5_{2}	3_{3}
1001	${ }^{\circ}$	P_{1}			${ }_{5}$	${ }^{\circ} \mathrm{O}$		\sim	${ }_{\text {sp}}$	E_{p}	:		\therefore	${ }^{\circ}$	${ }^{\circ}$	${ }^{5}$	${ }_{5}$	n	${ }^{\circ}$
1010	\%	1			£	0			!	§			c	\bigcirc	"	\checkmark	-	(8)	-
1011	-	\pm			${ }^{3}$				\uparrow	\cdot				${ }^{\circ}$	"	1/4	1/2	3/4	¿
1100	À	Á			A	A		A	E	Ç	E		E	Ê	E	İ	İ	Î	I
1101	\pm	N			ó	ó	O	O	0	\times	¢		U	U	Û	U	Ý	p	B
1410	à	á			a	a			¥	\&	è		é	ê	eै	i	1	î	i
1111	б	ñ			\bigcirc	ô		¢	ö	-	¢		ù	ú	û	ü	ý	p	y

ASCII, pronounced AS-key, stands for American Standard Code for Information Interchange

A is represented 01000001
B is represented 01000010
C is represented 01000011

FIT
 100 Storing Text

* Information is often stored by charge or magnetic field
 Schematic diagram of magnetic spots, say on a disk
* Its presence or absence can be detected, leading to a natural association with 1 and 0 to charged/neutral states (alternatively, plus-charged / not plus charged)

* Text is stored as a sequence of keyboard characters

FIT
 100 Embellishing Text

* Often, text is to have specific properties, e.g be printed in a specific font, be italic, etc.
* To distinguish the text from the modifiers that describe its properties, tag the modifiers
+ A tag is a text string, <tag> or </tag>, that modifies text
+ Pairs of tags surround the tagged text, e.g. <title>Gone with the Wind</title>
+ The "opening" and "closing" tags differ in that the close is indicated by a slash
+ Not all tags have a "match"
* Software interprets the tags when the text is being processed, e.g. printed or displayed as a web page

FIT 100
 Numbers

* In addition to text computers must store numbers
* Numbers are sometimes stored as text characters: 010001100100100101010100001100010011000000110000 $\mathrm{F} \quad \mathrm{l} \quad \mathrm{T} \quad 1 \quad 0 \quad 0$
* Mostly numbers are stored directly using binary notation, since it has only two digits, 0 and 1
* Binary numbers and arithmetic are very much
like decimal, except restricted to the two digits 0 and $1 \ldots$ what number is 1100100 ?

Binary is counting on your fists instead of your fingers
© 2001, University of Washington

FIT
 100
 Adding Is Familiar

* To add in binary use the same technique (algorithm), as decimal but restrict yourself to 0 and $1 \ldots$ everything else works the same way

* Binary is pretty tedious for humans because there are so many digits ... circuitry benefits however because it uses the two states (on/off) efficiently

FIT
 100 Summary

* Patterns are used to create symbols, symbols are used to represent information
* The binary digits (bits) 0 and 1 are a natural way to interpret the presence or absence of a phenomenon
* Bytes are composed of 8 bits, ASCII represents text as one character per byte
* Binary numbers and arithmetic are like decimal except they are limited to the two numerals 0 and 1
* Tags are used to insert modifiers into text and keep it separated from the text

