Encryption

CSE
 100

Keeping secrets in an electronic context is a challenge, but a new technology solves the problem using some very old mathematics

FIT
 100 Keeping Secrets

* Some things should be kept private
- Credit card numbers
- Passwords
- ...
* There are cases where trust is needed in IT

Secret Codes
and
Coin Flipping on the Phone

FIT
 100 A Secret Code

$$
\begin{aligned}
& 524-01794 \\
& 634-23682 \\
& 634-23683 \\
& 634-23686 \\
& 352-15902
\end{aligned}
$$

FIT $\mathbf{1 0 0}$ What Is a Cryptosystem?

$\frac{\mathrm{M}}{\text { Message }}$		C
Plaintext Cleartext		K_{AB}

FIT
 100 What Is a Public Key Cryptosystem?

M	C	\underline{K}_{B}	\underline{E}_{B}
Message	Encryption	Key	Public Key
Plaintext Cleartext	Cyphertext	Private Key	

FIT
 100 The RSA Public Key Cryptosystem

* Invented by Rivest, Shamir, and Adleman in 1977.
* Has proven resilient to all cryptanalytic attacks since.

FIT
 100
 Receiver's Set-Up

* Choose 500-digit primes p and q (each 2 more than a multiple of 3).
$p=5, q=11$
* Let $n=p q$.
$n=55$
* Let $s=(1 / 3)(2(p-1)(q-1)+1)$. $s=(1 / 3)(2 \cdot 4 \cdot 10+1)=27$
* Publish n.

Keep p, q and s secret.

FIT
 $\mathbf{1 0 0}$ Encrypting a Message

* Break the message into chunks.

Ha C HROS ...

* Translate each chunk into an integer $M(0<M<n)$.
$\begin{array}{ll}8 & 9 \\ 3 & 18 \\ 9 & 19\end{array}$
* Divide M^{β} by $n . \quad E(M)$ is the remainder.
$M=8, n=55$
$8^{3}=512=9 \times 55+17$
$E(8)=17$

FIT
 100 Decrypting A Cyphertext C

* Divide C^{s} by $n . \quad D(C)$ is the remainder.
$C=17, n=55, s=27$
$17^{27}=1,667,711,322,168,688,287,513,535,727,415,473$
$=30,322,024,039,430,696,136,609,740,498,463 \times 55+8$
$D(17)=8$
* Translate $D(C)$ into letters.

H

FIT
 100 Why does it work?

Euler's Theorem (1736): Suppose

* p and q are distinct primes,
* $n=p q$,
* $0 \leq M<n$, and
* $k>0$.

If $M^{k(p-1)(q-1)+1}$ is divided by n, the remainder is M.

$$
\begin{aligned}
\left(M^{3}\right)^{s} & =\left(M^{3}\right)^{(1 / 3)(2(p-1)(q-1)+1)} \\
& =M^{2(p-1)(q-1)+1}
\end{aligned}
$$

FIT
 100 Leonhard Euler 1707-1783

FIT
 100 Why Is It Secure?

* To find $M=D(C)$, you seem to need s.
* To find s, you seem to need p and q.
* All you have is $n=p q$.
* How hard is it to factor a 1000 -digit number n ?

With the grade school method, doing 10,000,000 steps per second it would take ... 10^{485} years.

FIT
 100
 State of the Art in Factoring

* 1977: Inventors encrypt a challenge using "RSA129," a 129-digit number $n=p q$.
* 1981: Pomerance invents a new factoring method.
* 1994: RSA129 factored over an 8 month period using 1000 computers on the Internet around the world.
* With this method, a 250-digit number would take $100,000,000$ times as long.

FIT
 100 Keeping Tracking Number Private

* Split Visits table into three parts

A
B

Choose random x.

$$
y=E_{A}(x)
$$

Guess if x is even or odd.

Check $y=E_{A}(x)$.

* B wins if the guess about x was right

FIT
 100 Summary

* Encryption is a process of encoding information so it is not easily deciphered
* The strength of the encryption technique is based on the difficulty of a cryptanalyst to break the code
* A Public Key Encryption scheme like RSA allows sender-to-receiver secure transmission without sender and receiver first exchanging keys
* Encryption aids with other trust-related tasks

