
���
���

© Copyright, Larry Snyder, 1999

What Is In the MsgBox?
Private Sub Form_Click()

a = 2
b = 3
c = 4
Call DoIt(a, b)
MsgBox (a & " " & b & " " & c)
Call DoIt(c, a)
MsgBox (a & " " & b & " " & c)
Call DoIt(c, b)
MsgBox (a & " " & b & " " & c)

End Sub

Private Sub DoIt (g As Integer, f As Integer)
Dim t As Integer
t = f
f = g
g = t

End Sub

���
���

© Copyright, Larry Snyder, 1999

Reliability, Correctness and Accountability

Can we build completely reliable and correct
computer systems? If not, who or what is

responsible for the failure? Are there
decisions computers should never make?

���
���

���
���

© Copyright, Larry Snyder, 1999

When Machines Fail…

❖ Failures occur when machines no longer perform as
desired or expected

❖ Mechanical failures tend to be localized and effect a
single aspect of the system (e.g., when the brakes on
a car fail, the engine still works fine)

❖ CONCEPT: Computational failures can be closely
coupled – a small failure in one part of the system
may have a significant effect elsewhere in the system
(e.g. Zero and the USS Yorktown)

���
���

© Copyright, Larry Snyder, 1999

Exactly What Do We Mean by Failure?

❖ We can understand failure in terms of system:

1. Specification

2. Correctness

3. Reliability

���
���

© Copyright, Larry Snyder, 1999

Specification

❖ CONCEPT: Specification is a precise description of
the desired behavior of a computer system

❖ That is, the specification may say what outputs are to
be produced by a system for each input

❖ For example, in the Binary Search Project, the project
description specified how the program was to work,
including what was to happen when a radio button
was selected, the “OK” button was clicked, and so on

���
���

© Copyright, Larry Snyder, 1999

Correctness

❖ CONCEPT: Correctness is the property of being
consistent with a specification.

❖ That is, the specification may say that proper outputs
are produced by a system for each input.

❖ For example, in the Binary Search project, the
program you wrote produced the proper outputs (e.g.,
asked the next question correctly) for each input
(e.g., depending on whether you clicked on the “yes”
or “no” button)

���
���

© Copyright, Larry Snyder, 1999

Reliability

❖ CONCEPT: Reliability is the capability of a computer
to perform consistently and precisely according to its
specifications and design requirements, and to do so
with high confidence.

❖ That is, the program may regularly produce the
proper outputs for each input.

❖ For example, in the Binary Search project, your
program consistently and precisely produced the
correct output (e.g., questions) for each input (e.g.,
clicking on the “yes” and “no” buttons)

���
���

© Copyright, Larry Snyder, 1999

But in the Real World…

❖ Given the complexity of computer systems, it
is virtually impossible to write programs that
are completely:
❏ Correct
❏ Reliable

❖ Moreover:
❏ We often specify solutions to the wrong

problem

���
���

© Copyright, Larry Snyder, 1999

How Good Is Good Enough?

❖ Standard of Practice

❏ Accepted practices of the field (e.g., testing, debugging)
❏ Reflect the “best” practices known

❏ Change over time as our knowledge changes and
(hopefully!) improves

❖ If standard practices NOT used and the system fails, then we
cry negligence! (e.g., when a building that wasn’t built to
standard specs crumbles during a small earthquake)

❖ However, if standard practices are used and the system fails,
then we don’t hold the engineers accountable (e.g., when a
building that was built to standard specs crumbles during a 9.8
earthquake)

���
���

© Copyright, Larry Snyder, 1999

Accountability

❖ When computer systems fail, who or what is
responsible?

❏ Software designers who designed the system and wrote the
specifications?

❏ Software engineers who wrote the code?

❏ System administrations who oversee the computer system’s
use?

❏ Users who use the system on a daily basis?

❏ Organization’s administration who decided to the computer
system would be used?

❏ The computer system itself?

���
���

© Copyright, Larry Snyder, 1999

A Thought Question…

 Are there some decisions that
computers should never make?

���
���

© Copyright, Larry Snyder, 1999

Statement 1

Computers should never make
any decisions which humans
want to make.

❖ Take out a piece of paper. Write your name(s) on it.
❖ Discuss this statement with the person to your right

or left. Do you agree or disagree? Why? Write
down two or three ideas that arise in your discussion.

❖ (I’ll collect these at the end of class today. These
won’t be graded.)

���
���

© Copyright, Larry Snyder, 1999

Statement 2

Computers should never make
any decisions which humans can
make more competently.

❖ Discuss this statement with the person to your right
or left. Do you agree or disagree? Why?

❖ Write down two or three ideas that arise in your
discussion.

���
���

© Copyright, Larry Snyder, 1999

Statement 3

Computers should never make
any decisions which humans
cannot override.

❖ Discuss this statement with the person to your right
or left. Do you agree or disagree? Why?

❖ Write down two or three ideas that arise in your
discussion.

���
���

© Copyright, Larry Snyder, 1999

James Moor

These “dubious” maxims come from an article by the
philosopher James Moor:

“Are there decisions computers should never make”
Nature and Systems, 1, pp. 217 – 219 (1979).

���
���

© Copyright, Larry Snyder, 1999

The Bottom Line

❖ Computers systems are only as good as people
make them

❖ We don’t know how to create computer systems that
function correctly and reliably all the time

❖ Our computer use needs to take into account the
limits of our abilities to create correct and reliable
systems

❖ Bottom Line: People decide when and how computer
systems will be used

