
���
���

© Copyright, Larry Snyder, 1999

Congratulations!

❖ The Binary Search project is done!!
❖ REFLECT: This is a significant accomplishment

❏ Understand a fundamental algorithm -- Binary Search
❏ Understand how to translate an algorithm into a program
❏ Have encoded the solution in VB6, showing that you know:

✛ Declaring variables and their types
✛ Assignment and expressions
✛ Conditionals (If-Then-Else)
✛ Event Handlers

❏ Getting it working also shows skill in trouble-shooting and
debugging

���
���

© Copyright, Larry Snyder, 1999

Why Has It Been So Challenging?

❖ Algorithm design, programming, application
development, etc. are intellectually tough … why?

❏ There is no “cookbook solution” … each case has its own
logic and requires its own reasoning

❏ The solution must be exactly right in every detail

❏ The language used to express the solution (VB6) is new to
you, strange and unforgiving

❏ The context -- Windows operating system, the VB6.0
development environment, the UW computing facilities -- is
also new and complicated

Learn by example and analogy

���
���

© Copyright, Larry Snyder, 1999

Graphics, Randomization and the
Beginnings of Animation

Having introduced the main programming
ideas for FIT100, it is time to put it all

together. The task will be to draw something
visually interesting on a form and in the

process get experience writing procedures

���
���

���
���

© Copyright, Larry Snyder, 1999

What You Already Know…

❖ How to:
❏ Write procedures

❏ Write procedures that use parameters

❏ Write a procedure that calls another procedure

❏ Use iteration (Do-While Loop)
✛ Which can call a procedure in the body of the loop

❏ Use conditionals (If-Then-Else)

���
���

© Copyright, Larry Snyder, 1999

What You Need to Learn

❖ How to:
❏ Color

❏ Make shapes (lines, boxes, rectangles, circles)

❏ Color in shapes

❏ Use a random number
❏ Convey a sense of motion …

���
���

© Copyright, Larry Snyder, 1999

Let’s Get Started: Drawing On A Form
❖ VB6: The form is logically divided into a grid, and a

position is designated by how many grid points it is
from the Left and the Top

❏ The upper left corner is position (0,0)
❏ The position (x, y) is x units from Left, and y units from Top
❏ Increasing the x value moves to the right
❏ Unlike graphing, though, increasing

the y value moves down
❏ The lower right corner is

position (ScaleWidth, ScaleHeight)
❏ To resize the form, change

ScaleWidth and ScaleHeight
❏ To make the window the size
 of the display set WindowState = 2

The Unit is a twip

���
���

© Copyright, Larry Snyder, 1999

Drawing A Line
❖ To draw a line on Form1, call the procedure

Form1.Line (x1, y1) - (x2, y2)

❖ If there is only one form, the form name can be elided (not be
used) (e.g. Line (x1, y1) – (x2, y2))

❖ To get a color, follow the positioning information with the
specification of the color

 Form1.Line (x1, y1) - (x2, y2), RGB(255,255,255)

(x1,y1)

(x2,y2)

Draw a white line beginning x1 units from the Left
and y1 units from Top, and extending to a point
x2 units from Left and y2 units down from Top

Notice the “minus”
between the two
coordinates

���
���

© Copyright, Larry Snyder, 1999

Red, Green and Blue

❖ Recall that colors are created on the screen with a
combination of three colors of light -- red, green, blue

❖ When drawing, one can specify the exact color by
calling a procedure, RGB(r, g, b) whose three
parameters are the contribution of the three colors in
the range 0 -- 255

❏ RGB(0, 0, 0)
❏ RGB(255, 0, 0)
❏ RGB(0, 255, 0)
❏ RGB(0, 0, 255)
❏ RGB(255,255,255)

���
���

© Copyright, Larry Snyder, 1999

Drawing A Box

❖ Drawing a rectangle is like drawing a line except that there is a
final parameter “B” which stands for “box”

Line (x1, y1) - (x2, y2), RGB(r, g, b), B

❖ A specific fill color can be achieved by having two properties set

❏ FillColor = RGB(r, g, b)
❏ FillStyle = 0

(x1,y1)

(x2,y2)

Indicates opaque

���
���

© Copyright, Larry Snyder, 1999

Programming A Rectangle

❖ To begin, draw a box in the Form_Click event handler

Notice the default color,
black, and where position
(1000,1000) is located …
1440 twips per inch

���
���

© Copyright, Larry Snyder, 1999

Color
❖ A black rectangle on a gray form is a little dull …
❖ Set the background color of the form to red

���
���

© Copyright, Larry Snyder, 1999

Primp Up The Form
❖ Make box fill with black and change line to white line

���
���

© Copyright, Larry Snyder, 1999

Make A Procedure For Box Drawing

❖ Draw a 1K×1K box with black fill and a white line
❖ The fill color will be whatever color is set when the

procedure is called

���
���

© Copyright, Larry Snyder, 1999

More Action, Please
❖ Click once, create one box
❖ Click again, show another
❖ Steps for multiclicks ...

❏ Declare clickCount variable
❏ In Form_Load initialize it to 0
❏ In Form_Click, increment it
❏ Then test its value with If-Then
❏ For each value do what you

want on that click

❖ 1st: black box
❖ 2nd: green box

���
���

© Copyright, Larry Snyder, 1999

Add Another Option

❖ Increase the form size
to cover whole screen

❖ Add another “click” case
❏ WindowState has 3 values

❏ Setting 2 maximizes form
❏ Drawing box from (0,0) to

(ScaleWidth,ScaleHeight)

covers the entire form …

make it red!

���
���

© Copyright, Larry Snyder, 1999

To Give Motion, Draw On Timer Tick
❖ Adding a timer allows changes to be made a regular

intervals … place timer anywhere on form

���
���

© Copyright, Larry Snyder, 1999

Turn Timer On/Off With Click

❖ The 4th click starts box draw
and the 5th click stops it

���
���

© Copyright, Larry Snyder, 1999

Randomize!

❖ Diagonal boxes are boring … randomize

❖ To do this, we’ll need to tell the computer to use
random numbers…

���
���

© Copyright, Larry Snyder, 1999

Random Numbers

❖ CONCEPT: Random numbers are numbers that are
independent or unrelated to each other

❏ Coin flipping can produce random bits … heads (0), tails (1)
❏ Rolling a die can produce random digits … 1 through 6

❏ Drawing cards from a shuffled deck can produce

✛ Random bits … red or black

✛ Random digits … 1 through 4 (Suit)
✛ Random digits … 1 through 13 (Value)

❖ Rnd is VB6’s random number generator

���
���

© Copyright, Larry Snyder, 1999

Using Rnd
1. Initialize the Random Number Generator: First, initialize VB6’s random

number generator Randomize (typically in the Form_Load() event
handler)

2. Generate a Specific Random Number: Rnd(1) gives a specific Double
(large number) between 0 and 1, e.g., 0.410592664

To chose randomly among an integral number of things, say x, multiply
Rnd(1) by x and truncate … the result is a random integer between 0
and x-1

❏ Pick among 6 things:
✛ Int(Rnd(1)*6) � Rnd(1) * 6 � 0.410592664 * 6 � 2.463555984 � 2

✛ Int(Rnd(1)*6) � Rnd(1) * 6 � 0.092154388 * 6 � 0.552926328 � 0

��������	�
�	�����
�
�������������
������

���
���

© Copyright, Larry Snyder, 1999

Randomness? Really?

❖ What is randomness?
❖ Computers are deterministic – they exactly follow

instructions and do exactly what is asked … how can
they do something random?

���
���

© Copyright, Larry Snyder, 1999

Randomness? Really?

❖ What is randomness?
❖ Computers are deterministic – they exactly follow

instructions and do exactly what is asked … how can
they do something random?

❖ CONCEPT: Rnd is “Pseudo-random,” a deterministic
computation that produces numbers that appear to
be random and pass standard tests for randomness

���
���

© Copyright, Larry Snyder, 1999

Randomize!

❖ Diagonal boxes are boring … randomize
❖ To place boxes randomly,

❏ Initialize Randomize in Form_Load
❏ Declare xPos, yPos

in tmrClock
❏ Pick a random number

in (0,1) range with a
Rnd(1) procedure call

❏ Multiply by the largest
size to scale & make Int

���
���

© Copyright, Larry Snyder, 1999

One result ...

���
���

© Copyright, Larry Snyder, 1999

Modify this program to…

❖ Fill the boxes with random shades of red

❖ Make the boxes appear more quickly on the screen

❖ Make the program draw larger boxes

❖ Make the program draw circles on the screen

���
���

© Copyright, Larry Snyder, 1999

Summary

❖ The goal of Project 3 is to explore the idea of
creativity and computation

❖ Create a (cool!) program with visually interesting
output

❖ You now know everything you need to get started…

